MHB Prove $\sqrt{1+\sqrt{2+\cdots+\sqrt{2006}}} < 2$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$.

Note that:
$$\sqrt{c + a} < b ~ ~ \iff ~ ~ c + a < b^2 ~ ~ \iff ~ ~ a < b^2 - c$$
For instance we have:
$$\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$$
$$\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}<3$$
$$\sqrt{3+\cdots+\sqrt{2006}}<7$$
$$\cdots$$
Unrolling the nested square roots as above, we must therefore show that:
$$\sqrt{2006} < ((((2^2 - 1)^2 - 2)^2 - 3)^2 - \cdots)^2 - 2005$$
Note that the sequence defined by $a_1 = 2$ and $a_{n + 1} = a_n^2 - n$, corresponding to the sequence of RHS above, is increasing. We prove this by induction by showing that $a_n \geq n + 1$. First $a_1 = 2$ so the base case holds, now assume $a_n \geq n + 1$, then $a_n^2 - n \geq (n + 1)^2 - n$, that is, $a_{n + 1} = a_n^2 - n \geq n^2 + n + 1 \geq (n + 1) + 1$ as $n^2 \geq 1$. By induction, $a_n \geq n + 1$ for all $n$. Thus we can now show that $a_{n + 1} = a_n^2 - n \geq a_n$, as that is equivalent to $a_n^2 - a_n - n \geq 0$, and since $m^2 \geq 2m$ for all $\lvert m \rvert > 1$ it follows that $a_n^2 - a_ n - n \geq a_n - n \geq (n + 1) - n \geq 1 \geq 0$ and so $(a_n)_{n = 1}^\infty$ is increasing. Finally, the sequence becomes greater than $\sqrt{2006} \approx 44.788$ at $n = 4$ by simple arithmetic as $a_4 = 46$, which proves the claim. $\blacksquare$​
 
Last edited:
Bacterius said:
Note that:
$$\sqrt{c + a} < b ~ ~ \iff ~ ~ c + a < b^2 ~ ~ \iff ~ ~ a < b^2 - c$$
For instance we have:
$$\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$$
$$\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}<3$$
$$\sqrt{3+\cdots+\sqrt{2006}}<7$$
$$\cdots$$
Unrolling the nested square roots as above, we must therefore show that:
$$\sqrt{2006} < ((((2^2 - 1)^2 - 2)^2 - 3)^2 - \cdots)^2 - 2005$$
Note that the sequence defined by $a_1 = 2$ and $a_{n + 1} = a_n^2 - n$, corresponding to the sequence of RHS above, is increasing. We prove this by induction by showing that $a_n \geq n + 1$. First $a_1 = 2$ so the base case holds, now assume $a_n \geq n + 1$, then $a_n^2 - n \geq (n + 1)^2 - n$, that is, $a_{n + 1} = a_n^2 - n \geq n^2 + n + 1 \geq (n + 1) + 1$ as $n^2 \geq 1$. By induction, $a_n \geq n + 1$ for all $n$. Thus we can now show that $a_{n + 1} = a_n^2 - n \geq a_n$, as that is equivalent to $a_n^2 - a_n - n \geq 0$, and since $m^2 \geq 2m$ for all $\lvert m \rvert > 1$ it follows that $a_n^2 - a_ n - n \geq a_n - n \geq (n + 1) - n \geq 1 \geq 0$ and so $(a_n)_{n = 1}^\infty$ is increasing. Finally, the sequence becomes greater than $\sqrt{2006} \approx 44.788$ at $n = 4$ by simple arithmetic as $a_4 = 46$, which proves the claim. $\blacksquare$​

Well done, Bacterius, and thanks for participating!

Solution of other:

Let $X=\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2004+\sqrt{2005+\sqrt{2006}}}}}}$, note that $\sqrt{2005+\sqrt{2006}}<\sqrt{2005+46}<46$

$\therefore X<\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2004+46}}}}$

By the same token

$X<\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2003+46}}}}$
$\vdots$

$X<\sqrt{1+\sqrt{2+\sqrt{3++46}}}=2$ and this completes the proof.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top