- #1
mahler1
- 222
- 0
Homework Statement .
Prove that ##\{x_n\}_{n \in \mathbb N} \subset \mathbb R## doesn't have any convergent subsequence iff ##lim_{n \to \infty} |x_n|=+\infty##.
The attempt at a solution.
I think I could correctly prove the implication ##lim_{n \to \infty} |x_n|=+\infty \implies## it doesn't exist any convergent subsequence:
Suppose there exists ##\{x_{n_k}\}_{k \in \mathbb N}## convergent and call the limit ##A##. Then, for ##ε=1##, there exists ##n_0: \forall n≥n_0, |x_{n_k}-A|< 1##.
This means, ##\forall n≥n_0, |x_{n_k}|-|A|\leq |x_{n_k}-A|< 1 \implies |x_{n_k}|<1+|A| ##.
On the other hand, ##lim_{n \to \infty} |x_n|=+\infty##, so, for ##M=1+|A|##, there exists ##n_1 : \forall n≥n_1, |x_n|>M##.
Take ##N=max\{n_0,n_1\}##, then for all ##n_k≥N, \space M<|x_{n_k}|<M##, which is clearly absurd. This proves that with the given hypothesis, it can't exist any convergent subsequence of the original sequence.
I need help to prove the other implication: If there is no convergent subsequence then ##lim_{n \to \infty} |x_n|=+\infty##.
Prove that ##\{x_n\}_{n \in \mathbb N} \subset \mathbb R## doesn't have any convergent subsequence iff ##lim_{n \to \infty} |x_n|=+\infty##.
The attempt at a solution.
I think I could correctly prove the implication ##lim_{n \to \infty} |x_n|=+\infty \implies## it doesn't exist any convergent subsequence:
Suppose there exists ##\{x_{n_k}\}_{k \in \mathbb N}## convergent and call the limit ##A##. Then, for ##ε=1##, there exists ##n_0: \forall n≥n_0, |x_{n_k}-A|< 1##.
This means, ##\forall n≥n_0, |x_{n_k}|-|A|\leq |x_{n_k}-A|< 1 \implies |x_{n_k}|<1+|A| ##.
On the other hand, ##lim_{n \to \infty} |x_n|=+\infty##, so, for ##M=1+|A|##, there exists ##n_1 : \forall n≥n_1, |x_n|>M##.
Take ##N=max\{n_0,n_1\}##, then for all ##n_k≥N, \space M<|x_{n_k}|<M##, which is clearly absurd. This proves that with the given hypothesis, it can't exist any convergent subsequence of the original sequence.
I need help to prove the other implication: If there is no convergent subsequence then ##lim_{n \to \infty} |x_n|=+\infty##.