Prove: Sum of Cubed Roots of Trigonometric Expressions Equals Square Root of 9/2

  • MHB
  • Thread starter anemone
  • Start date
In summary, the equation that needs to be proved is: ∛(cosx) + ∛(sinx) = √(9/2). To prove this equation, we will use the identities ∛(cosx) = cos(x/3), ∛(sinx) = sin(x/3), and cos²(x/3) + sin²(x/3) = 1. Proving this equation is important as it shows a fundamental relationship between trigonometric functions and can be applied in fields such as physics, engineering, and navigation. Other similar equations that can be proven using trigonometric identities include ∛(cosx) - ∛(sinx) = √(2),
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Here is this week's POTW:

-----

Prove $\sqrt[3]{\sqrt{3}\cos10^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos110^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos130^{\circ}+1}=\sqrt[3]{\dfrac{9}{2}}$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
  • #2
Hi to all MHB members!

Despite of the fact that last week's High School's POTW is more difficult than usual, I am going to give members another week to attempt at a solution!(Smile)
 
  • #3
No one answered last two week's POTW.(Sadface)

Solution from other:
Let $X=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}$ where

$\begin{align*}a&=\sqrt{3}\cos 10^{\circ}+1\\&=2\cos 30^{\circ}\cos 10^{\circ}+1\\&=\cos 40^{\circ}+\cos 20^{\circ}+1\\&=2\cos^{2}20^{\circ}+\cos 20^{\circ}\\&=2\cos 20^{\circ}\left(\cos 20^{\circ}+\frac{1}{2}\right)\\&=2\cos 20^{\circ}(\cos 20^{\circ}+\cos 60^{\circ})\\&=2\cos 20^{\circ}2\cos 40^{\circ}\cos 20^{\circ}\\&=4\cos^2 20^{\circ}\cos 40^{\circ}\end{align*}$

$\begin{align*}b&=\sqrt{3}\cos 110^{\circ}+1\\&=2\sin 60^{\circ}\cos 110^{\circ}+1\\&=\sin 170^{\circ}-\sin 50^{\circ}+1\\&=\sin 10^{\circ}-\sin 50^{\circ}+\sin 90^{\circ}\\&=2\sin 50^{\circ}\cos 40^{\circ}-\sin 50^{\circ}\\&=2\sin 50^{\circ}\left(\cos 40^{\circ}-\frac{1}{2}\right)\\&=2\sin 50^{\circ}2\sin 50^{\circ}\sin 10^{\circ}\\&=4\sin^2 50^{\circ}\sin 10^{\circ}\\&=4\cos^2 40^{\circ}\sin 10^{\circ}\end{align*}$

$\begin{align*}c&=\sqrt{3}\cos 130^{\circ}+1\\&=2\cos 30^{\circ}\cos 130^{\circ}+1\\&=\cos 160^{\circ}+\cos 100^{\circ}+1\\&=-\cos 20^{\circ}-\sin 10^{\circ}+1\\&=2\sin^2 10^{\circ}-\sin 10^{\circ}\\&=2\sin 10^{\circ}\left(\sin 10^{\circ}-\frac{1}{2}\right)\\&=2\sin 10^{\circ}(\cos 80^{\circ}-\cos 60^{\circ})\\&=2\sin 10^{\circ}(-2\sin 70^{\circ}\sin 10^{\circ})\\&=-4\sin^{2}10^{\circ}\cos 20^{\circ}\end{align*}$$\begin{align*}X^{3}&=(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c})^{3}\\&=a+b+c+3(\sqrt[3]{a^{2}b}+\sqrt[3]{a^{2}c}+\sqrt[3]{b^{2}a}+\sqrt[3]{b^{2}c}+2\sqrt[3]{abc}+\sqrt[3]{c^{2}a}+\sqrt[3]{c^{2}b})\end{align*}$

$\begin{align*}a+b+c&=\sqrt{3}\cos 10^{\circ}+1+\sqrt{3}\cos 110^{\circ}+1+\sqrt{3}\cos 130^{\circ}+1\\&=\sqrt{3}(\cos 10^{\circ}+\cos 110^{\circ}+\cos 130^{\circ})+3\\&=\sqrt{3}(2\cos 60^{\circ}\cos 50^{\circ}+\cos 130^{\circ})+3\\&=\sqrt{3}(\cos 50^{\circ}+\cos 130^{\circ})+3\\&=\sqrt{3}(2\cos 90^{\circ}\cos 40^{\circ})+3\\&=\sqrt{3} \cdot 0 + 3\\&=3\end{align*}$

$\begin{align*}\sqrt[3]{a^{2}b}&=\sqrt[3]{4^3\cos^{4}20^{\circ}\cos^{4}40^{\circ} \cdot \sin 10^{\circ}}\\&=4\cos 20^{\circ}\cos 40^{\circ}\sqrt[3]{\cos 40^{\circ}\cos 20^{\circ}\sin 10^{\circ}}\\&=4\cos 20^{\circ}\cos 40^{\circ}\sqrt[3]{\dfrac{\cos 2(30^{\circ})}{4}}\\&=4\cos 20^{\circ}\cos 40^{\circ}\sqrt[3]{\frac{1}{8}}\\&=2\cos 20^{\circ}\cos 40^{\circ}\end{align*}$.

$\sqrt[3]{a^{2}c}=-\cos 20^{\circ}$.
$\sqrt[3]{b^{2}a}=\cos 40^{\circ}$.
$\sqrt[3]{b^{2}c}=-2\cos 40^{\circ}\cos 80^{\circ}=-2\cos 40^{\circ}\sin 10^{\circ}$.

$2\sqrt[3]{abc}=-8\cos 20^{\circ}\cos 40^{\circ}\sin 10^{\circ}=\dfrac{-8}{8}=-1$.
$\sqrt[3]{c^{2}a}=2\sin 10^{\circ}\cos 20^{\circ}$.
$\sqrt[3]{c^{2}b}=\sin 10^{\circ}$.

$\begin{align*}X^{3}&=3+3(2\cos 20^{\circ}\cos 40^{\circ}-\cos 20^{\circ}+\cos 40^{\circ}-2\cos 40^{\circ}\sin 10^{\circ}-1+2\sin 10^{\circ}\cos 20^{\circ}+\sin 10^{\circ})\\&=3+3(2(\cos 20^{\circ}\cos 40^{\circ}-\cos 40^{\circ}\sin 10^{\circ}+\sin 10^{\circ}\cos 20^{\circ})-\cos 20^{\circ}+\cos 40^{\circ}-1+\sin 10^{\circ})\\&=3+3(2\left(\dfrac{1}{2}(\cos 60^{\circ}+\cos 20^{\circ})-\dfrac{1}{2}(\sin 50^{\circ}-\sin 30^{\circ})+\dfrac{1}{2}(\sin 30^{\circ}-\sin 10^{\circ})\right)-\sin 10^{\circ}-1+\sin 10^{\circ})\\&=3+3((\dfrac{1}{2}+\cos 20^{\circ}-\sin 50^{\circ}+\dfrac{1}{2}+\dfrac{1}{2}-\sin 10^{\circ})-1)\\&=3+3((\dfrac{3}{2}+\cos 20^{\circ}-(2\sin 30^{\circ}\cos 20^{\circ})-1)\\&=3+3 \cdot \frac{1}{2}\\&=\frac{9}{2}\end{align*}$This implies $X=\sqrt[3]{\frac{9}{2}}$ i.e. $\sqrt[3]{\sqrt{3}\cos10^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos110^{\circ}+1}+\sqrt[3]{\sqrt{3}\cos130^{\circ}+1}=\sqrt[3]{\frac{9}{2}}$.
 

FAQ: Prove: Sum of Cubed Roots of Trigonometric Expressions Equals Square Root of 9/2

What is the equation for the sum of cubed roots of trigonometric expressions?

The equation is: ∛(sinx + cosx) + ∛(sinx - cosx) = √(9/2)

How do you prove the equation for the sum of cubed roots of trigonometric expressions?

To prove the equation, we can use the identity for the sum of cubes: a³ + b³ = (a + b)(a² - ab + b²). By substituting sinx and cosx for a and b, we get: sin³x + cos³x = (sinx + cosx)(sin²x - sinxcosx + cos²x). We can then simplify this expression and use the Pythagorean identity to show that it is equal to √(9/2).

What is the significance of the square root of 9/2 in the equation?

The square root of 9/2 is significant because it is a constant value that represents the sum of the cubed roots of trigonometric expressions. It is a simplified version of the equation and shows that the sum of the cubed roots of trigonometric expressions will always equal this value.

Can this equation be used to solve for specific values of x?

Yes, this equation can be used to solve for specific values of x. By substituting different values of x into the equation and simplifying, we can find the corresponding values for the sum of the cubed roots of trigonometric expressions.

How is this equation relevant in mathematics or other fields?

This equation is relevant in mathematics because it demonstrates the relationship between trigonometric expressions and their cubed roots. It can also be used in various fields such as physics and engineering, where trigonometric functions are commonly used to model and solve problems.

Back
Top