MHB Prove (tan^2 t−1)/(sec^2 t)=(tan t−cot t)/(tan t+cot t)

  • Thread starter Thread starter karush
  • Start date Start date
AI Thread Summary
The discussion focuses on proving the identity (tan² t - 1)/(sec² t) = (tan t - cot t)/(tan t + cot t). Participants explore various methods to simplify the expression, with one suggestion being to multiply the numerator and denominator by cot(t). This approach leads to a successful derivation of the identity, confirming that both sides are equal. The conversation emphasizes the desire for a concise solution, ideally in just a few steps. Ultimately, the identity is proven through algebraic manipulation and trigonometric identities.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
show that this is an identity

\begin{align*}\displaystyle
\frac{\tan^2 t -1}{\sec^2 t}
&=\frac{\tan t-\cot t}{\tan t+\cot t}\\
\frac{\tan^2 t -1}{\tan^2 t+1}&=
\end{align*}

OK I continued but I could not derive an equal identity

I saw a solution to this on SYM but it was many steps and got very bloated

there must be some way to do this in like 3 steps?
 
Mathematics news on Phys.org
karush said:
show that this is an identity

\begin{align*}\displaystyle
\frac{\tan^2 t -1}{\sec^2 t}
&=\frac{\tan t-\cot t}{\tan t+\cot t}\\
\frac{\tan^2 t -1}{\tan^2 t+1}&=
\end{align*}

OK I continued but I could not derive an equal identity

I saw a solution to this on SYM but it was many steps and got very bloated

there must be some way to do this in like 3 steps?
[math]\dfrac{tan^2(t) - 1}{tan^2(t) + 1}[/math]

Try multiplying the numerator and denominstor by cot(x).

-Dan
 
topsquark said:
[math]\dfrac{tan^2(t) - 1}{tan^2(t) + 1}[/math]

Try multiplying the numerator and denominstor by cot(x).

-Dan

oh cool!

[math]\dfrac{(tan^2(t) - 1)(\cot t)}{(tan^2(t) + 1)(\cot t)}
=\frac{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}-\frac{\cos t}{\sin t}}
{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}+\frac{\cos t}{\sin t}}
=\frac{\tan t-\cot t}{\tan t+\cot t}[/math]
 
karush said:
oh cool!

[math]\dfrac{(tan^2(t) - 1)(\cot t)}{(tan^2(t) + 1)(\cot t)}
=\frac{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}-\frac{\cos t}{\sin t}}
{\frac{\sin^\cancel{2} t}{\cos^\cancel{2} t}\frac{\cancel\cos t}{\cancel\sin t}+\frac{\cos t}{\sin t}}
=\frac{\tan t-\cot t}{\tan t+\cot t}[/math]
Or simply note that [math]cot(x) \cdot tan^2(x) = tan(x)[/math]. :)

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top