- #1
karush
Gold Member
MHB
- 3,269
- 5
show that this is an identity
\begin{align*}\displaystyle
\frac{\tan^2 t -1}{\sec^2 t}
&=\frac{\tan t-\cot t}{\tan t+\cot t}\\
\frac{\tan^2 t -1}{\tan^2 t+1}&=
\end{align*}
OK I continued but I could not derive an equal identity
I saw a solution to this on SYM but it was many steps and got very bloated
there must be some way to do this in like 3 steps?
\begin{align*}\displaystyle
\frac{\tan^2 t -1}{\sec^2 t}
&=\frac{\tan t-\cot t}{\tan t+\cot t}\\
\frac{\tan^2 t -1}{\tan^2 t+1}&=
\end{align*}
OK I continued but I could not derive an equal identity
I saw a solution to this on SYM but it was many steps and got very bloated
there must be some way to do this in like 3 steps?