- #1
Math100
- 792
- 220
- Homework Statement
- Employ Fermat's theorem to prove that, if ## p ## is an odd prime, then
## 1^{p}+2^{p}+3^{p}+\dotsb +(p-1)^{p}\equiv 0\pmod {p} ##.
[Hint: Recall the identity ## 1+2+3+\dotsb +(p-1)=p(p-1)/2 ##.]
- Relevant Equations
- None.
Proof:
Suppose ## p ## is an odd prime such that ## p\geq 3 ##.
By Fermat's theorem, we have that ## a^{p}\equiv a\pmod {p} ##.
Then
\begin{align*}
&1^{p}\equiv 1\pmod {p}\\
&2^{p}\equiv 2\pmod {p}\\
&3^{p}\equiv 3\pmod {p}\\
&\vdots \\
&(p-1)^{p}\equiv (p-1)\pmod {p}.\\
\end{align*}
This means ## 1^{p}+2^{p}+3^{p}+\dotsb +(p-1)^{p}\equiv [1+2+3+\dotsb +(p-1)]\pmod {p} ##.
Since ## 1+2+3+\dotsb +n=\frac{n(n+1)}{2} ##,
it follows that ## 1+2+3+\dotsb +(p-1)=\frac{p(p-1)}{2} ##.
Observe that ## p-1 ## is even, so ## p-1=2k ## for some ## k\in\mathbb{N} ##.
Now we have ## 1+2+3+\dotsb +(p-1)=pk ##.
Thus ## 1^{p}+2^{p}+3^{p}+\dotsb +(p-1)^{p}\equiv pk\equiv 0\pmod {p} ##.
Therefore, if ## p ## is an odd prime, then ## 1^{p}+2^{p}+3^{p}+\dotsb +(p-1)^{p}\equiv 0\pmod {p} ##.
Suppose ## p ## is an odd prime such that ## p\geq 3 ##.
By Fermat's theorem, we have that ## a^{p}\equiv a\pmod {p} ##.
Then
\begin{align*}
&1^{p}\equiv 1\pmod {p}\\
&2^{p}\equiv 2\pmod {p}\\
&3^{p}\equiv 3\pmod {p}\\
&\vdots \\
&(p-1)^{p}\equiv (p-1)\pmod {p}.\\
\end{align*}
This means ## 1^{p}+2^{p}+3^{p}+\dotsb +(p-1)^{p}\equiv [1+2+3+\dotsb +(p-1)]\pmod {p} ##.
Since ## 1+2+3+\dotsb +n=\frac{n(n+1)}{2} ##,
it follows that ## 1+2+3+\dotsb +(p-1)=\frac{p(p-1)}{2} ##.
Observe that ## p-1 ## is even, so ## p-1=2k ## for some ## k\in\mathbb{N} ##.
Now we have ## 1+2+3+\dotsb +(p-1)=pk ##.
Thus ## 1^{p}+2^{p}+3^{p}+\dotsb +(p-1)^{p}\equiv pk\equiv 0\pmod {p} ##.
Therefore, if ## p ## is an odd prime, then ## 1^{p}+2^{p}+3^{p}+\dotsb +(p-1)^{p}\equiv 0\pmod {p} ##.