Prove that ##12≤OP≤13## in the problem involving complex numbers

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached.
Relevant Equations
Complex numbers
Find the question below; note that no solution is provided for this question.

1641037770478.png


My approach;
Find part of my sketch here;

* My diagram may not be accurate..i just noted that, ##OP## takes smallest value of ##12## when ##|z+5|=|z-5|## i.e at the end of its minor axis and greatest value ##13## at end of its major axis

1641037915512.png


We have been given,
##|z-5|+(z+5|=26##
Then ##OP=|z|=|\dfrac{1}{2}((z+5)+(z-5))|##
##≤ \dfrac{1}{2}(|z+5|+|z-5|)=\dfrac{1}{2}×26=13##

Also,
##(|z+5|+|z-5|)^2=676## and ##(|z+5|-|z-5|)^2≥0##, adding this two gives us
##2|z+5|^2+2|z-5|^2≥676##
##⇒|z+5|^2+|z-5|^2≥338##
##(z+5)(z^*+5^*)+(z-5)(z^*-5^*)≥338##
##2zz^*+50≥338##
##2zz^*≥288##
##zz^*≥144##, which is ##|z|^2≥144##
##⇒z≥12##, therefore ##12≤OP≤13##
 
Last edited:
Physics news on Phys.org
Looks good.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top