- #1
Math100
- 802
- 221
- Homework Statement
- The three most recent appearances of Halley's comet were in the years ## 1835, 1910 ##, and ## 1986 ##; the next occurrence will be in ## 2061 ##. Prove that ## 1835^{1910}+1986^{2061}\equiv 0\pmod {7} ##.
- Relevant Equations
- None.
Proof:
Observe that ## 1835\equiv 1\pmod {7}\implies 1835^{1910}\equiv 1\pmod {7} ##.
Then ## 1986\equiv 5\pmod {7} ##.
Applying the Fermat's theorem produces:
## 5^{6}\equiv 1\pmod {7} ##.
This means ## 1986^{2061}\equiv 5^{6\cdot 343+3}\pmod {7}\equiv 5^{3}\pmod {7}\equiv 6\pmod {7} ##.
Thus ## 1835^{1910}+1986^{2061}\pmod {7}\equiv (1+6)\pmod {7}\equiv 0\pmod {7} ##.
Therefore, ## 1835^{1910}+1986^{2061}\equiv 0\pmod {7} ##.
Observe that ## 1835\equiv 1\pmod {7}\implies 1835^{1910}\equiv 1\pmod {7} ##.
Then ## 1986\equiv 5\pmod {7} ##.
Applying the Fermat's theorem produces:
## 5^{6}\equiv 1\pmod {7} ##.
This means ## 1986^{2061}\equiv 5^{6\cdot 343+3}\pmod {7}\equiv 5^{3}\pmod {7}\equiv 6\pmod {7} ##.
Thus ## 1835^{1910}+1986^{2061}\pmod {7}\equiv (1+6)\pmod {7}\equiv 0\pmod {7} ##.
Therefore, ## 1835^{1910}+1986^{2061}\equiv 0\pmod {7} ##.