- #1
Math100
- 802
- 221
- Homework Statement
- Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 7, 11 ##, and ## 13 ## all divide ## N ## if and only if ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
[Hint: If ## n ## is even, then ## 10^{3n}\equiv 1, 10^{3n+1}\equiv 10, 10^{3n+2}\equiv 100\pmod {1001} ##; if ## n ## is odd, then ## 10^{3n}\equiv -1, 10^{3n+1}\equiv -10, 10^{3n+2}\equiv -100\pmod {1001} ##.]
- Relevant Equations
- None.
Proof:
Assume that ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##,
be the decimal expansion of a positive integer ## N ##.
Observe that ## 7\cdot 11\cdot 13=1001 ##.
Now we consider two cases.
Case #1: Suppose ## n ## is even.
Then ## 10^{3n}\equiv 1\implies 10^{3n+1}\equiv 10 ##.
Thus ## 10^{3n+2}\equiv 100\pmod {1001} ##.
Case #2: Suppose ## n ## is odd.
Then ## 10^{3n}\equiv -1\implies 10^{3n+1}\equiv -10 ##.
Thus ## 10^{3n+2}\equiv -100\pmod {1001} ##.
Since ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv [(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb]\pmod {1001} ##, it follows that ## N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Conversely, suppose ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Note that ## 7\cdot 11\cdot 13=1001 ##.
Then ## (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb\equiv 0\pmod {1001} ##.
This means ## a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv 0\pmod {1001}\implies N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Therefore, ## 7, 11 ##, and ## 13 ## all divide ## N ## if and only if ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Assume that ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##,
be the decimal expansion of a positive integer ## N ##.
Observe that ## 7\cdot 11\cdot 13=1001 ##.
Now we consider two cases.
Case #1: Suppose ## n ## is even.
Then ## 10^{3n}\equiv 1\implies 10^{3n+1}\equiv 10 ##.
Thus ## 10^{3n+2}\equiv 100\pmod {1001} ##.
Case #2: Suppose ## n ## is odd.
Then ## 10^{3n}\equiv -1\implies 10^{3n+1}\equiv -10 ##.
Thus ## 10^{3n+2}\equiv -100\pmod {1001} ##.
Since ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv [(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb]\pmod {1001} ##, it follows that ## N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Conversely, suppose ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.
Note that ## 7\cdot 11\cdot 13=1001 ##.
Then ## (100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb\equiv 0\pmod {1001} ##.
This means ## a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}\equiv 0\pmod {1001}\implies N\equiv 0\pmod {1001} ##.
Thus ## 7, 11 ##, and ## 13 ## all divide ## N ##.
Therefore, ## 7, 11 ##, and ## 13 ## all divide ## N ## if and only if ## 7, 11 ##, and ## 13 ## divide the integer ## M=(100a_{2}+10a_{1}+a_{0})-(100a_{5}+10a_{4}+a_{3})+(100a_{8}+10a_{7}+a_{6})-\dotsb ##.