- #1
Math100
- 802
- 222
- Homework Statement
- Use the theory of congruences to verify that ## 89\mid (2^{44}-1) ## and ## 97\mid (2^{48}-1) ##.
- Relevant Equations
- None.
Proof:
First, consider ## 89\mid (2^{44}-1) ##.
Observe that
\begin{align*}
2^{44}-1&\equiv (2^{11})^{4}-1\pmod {89}\\
&\equiv [(1)^{4}-1]\pmod {89}\\
&\equiv (1-1)\pmod {89}\\
&\equiv 0\pmod {89}.\\
\end{align*}
Thus ## 89\mid (2^{44}-1) ##.
Next, consider ## 97\mid (2^{48}-1) ##.
Observe that
\begin{align*}
2^{48}-1&\equiv [(2^{6})^{8}-1]\pmod {97}\\
&\equiv [(-33)^{2}]^{4}-1\pmod {97}\\
&\equiv (22^{4}-1)\pmod {97}\\
&\equiv [(22^{2})^{2}-1]\pmod {97}\\
&\equiv [(-1)^{2}-1]\pmod {97}\\
&\equiv (1-1)\pmod {97}\\
&\equiv 0\pmod {97}.\\
\end{align*}
Thus ## 97\mid (2^{48}-1) ##.
Therefore, ## 89\mid (2^{44}-1) ## and ## 97\mid (2^{48}-1) ##.
First, consider ## 89\mid (2^{44}-1) ##.
Observe that
\begin{align*}
2^{44}-1&\equiv (2^{11})^{4}-1\pmod {89}\\
&\equiv [(1)^{4}-1]\pmod {89}\\
&\equiv (1-1)\pmod {89}\\
&\equiv 0\pmod {89}.\\
\end{align*}
Thus ## 89\mid (2^{44}-1) ##.
Next, consider ## 97\mid (2^{48}-1) ##.
Observe that
\begin{align*}
2^{48}-1&\equiv [(2^{6})^{8}-1]\pmod {97}\\
&\equiv [(-33)^{2}]^{4}-1\pmod {97}\\
&\equiv (22^{4}-1)\pmod {97}\\
&\equiv [(22^{2})^{2}-1]\pmod {97}\\
&\equiv [(-1)^{2}-1]\pmod {97}\\
&\equiv (1-1)\pmod {97}\\
&\equiv 0\pmod {97}.\\
\end{align*}
Thus ## 97\mid (2^{48}-1) ##.
Therefore, ## 89\mid (2^{44}-1) ## and ## 97\mid (2^{48}-1) ##.