- #1
Math100
- 797
- 221
- Homework Statement
- Prove the assertions below:
For any integer ## a ##, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ##.
- Relevant Equations
- None.
Proof:
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, ## or ## 6\pmod {7} ##.
Note that ## a\equiv b\pmod {n}\implies a^{3}\equiv b^3\pmod{n} ##.
This means ## a^{3}\equiv 0, 1, 8, 27, 64, 125 ## or ## 216\pmod{7}\implies a^{3}\equiv 0, 1, 1, 6, 1, 6 ## or ## 6\pmod {7} ##.
Thus ## a^{3}\equiv 0, 1 ## or ## 6\pmod {7} ##.
Therefore, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ## for any integer ## a ##.
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, ## or ## 6\pmod {7} ##.
Note that ## a\equiv b\pmod {n}\implies a^{3}\equiv b^3\pmod{n} ##.
This means ## a^{3}\equiv 0, 1, 8, 27, 64, 125 ## or ## 216\pmod{7}\implies a^{3}\equiv 0, 1, 1, 6, 1, 6 ## or ## 6\pmod {7} ##.
Thus ## a^{3}\equiv 0, 1 ## or ## 6\pmod {7} ##.
Therefore, ## a^{3}\equiv 0, 1, ## or ## 6\pmod {7} ## for any integer ## a ##.