- #1
Math100
- 794
- 221
- Homework Statement
- Prove the assertion below:
For any integer ## a ##, ## a^{4}\equiv 0 ## or ## 1\pmod {5} ##.
- Relevant Equations
- None.
Proof:
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3 ## or ## 4\pmod {5} ##.
Note that ## a\equiv b\pmod {n}\implies a^{4}\equiv b^{4}\pmod {n} ##.
This means ## a^{4}\equiv 0, 1, 16, 81 ## or ## 256\pmod {5}\implies a^{4}\equiv 0, 1, 1, 1 ## or ## 1\pmod {5} ##.
Thus ## a^{4}\equiv 0 ## or ## 1\pmod {5} ##.
Therefore, ## a^{4}\equiv 0 ## or ## 1\pmod {5} ## for any integer ## a ##.
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3 ## or ## 4\pmod {5} ##.
Note that ## a\equiv b\pmod {n}\implies a^{4}\equiv b^{4}\pmod {n} ##.
This means ## a^{4}\equiv 0, 1, 16, 81 ## or ## 256\pmod {5}\implies a^{4}\equiv 0, 1, 1, 1 ## or ## 1\pmod {5} ##.
Thus ## a^{4}\equiv 0 ## or ## 1\pmod {5} ##.
Therefore, ## a^{4}\equiv 0 ## or ## 1\pmod {5} ## for any integer ## a ##.