- #1
Math100
- 802
- 222
- Homework Statement
- If ## a_{1}, a_{2}, ..., a_{n} ## is a complete set of residues modulo ## n ## and ## gcd(a, n)=1 ##, prove that ## aa_{1}, aa_{2}, ..., aa_{n} ## is also a complete set of residues modulo ## n ##.
[Hint: It suffices to show that the numbers in question are incongruent modulo ## n ##.]
- Relevant Equations
- None.
Proof:
Suppose for the sake of contradiction that ## aa_{i}\equiv aa_{j}\pmod {n} ## for some ## i,j\in\mathbb{Z} ## such that ## 1\leq i<j\leq n ##.
Then ## aa_{i}\equiv aa_{j}\pmod {n}\implies n\mid (aa_{i}-aa_{j})\implies n\mid [a(a_{i}-a_{j})] ##.
Note that ## n\mid b ## if ## n\mid (ab) ## and ## gcd(n, a)=1 ## by Euclid's lemma.
Since ## gcd(a, n)=1 ##, it follows that ## n\mid (a_{i}-a_{j})\implies a_{i}\equiv a_{j}\pmod {n} ##.
This is a contradiction because ## a_{i}\not\equiv a_{j}\pmod {n} ##, given that ## a_{1}, a_{2}, ..., a_{n} ## is a complete set of residues modulo ## n ## and ## gcd(a, n)=1 ##.
Therefore, if ## a_{1}, a_{2}, ..., a_{n} ## is a complete set of residues modulo ## n ## and ## gcd(a, n)=1 ##, then ## aa_{1}, aa_{2}, ..., aa_{n} ## is also a complete set of residues modulo ## n ##.
Suppose for the sake of contradiction that ## aa_{i}\equiv aa_{j}\pmod {n} ## for some ## i,j\in\mathbb{Z} ## such that ## 1\leq i<j\leq n ##.
Then ## aa_{i}\equiv aa_{j}\pmod {n}\implies n\mid (aa_{i}-aa_{j})\implies n\mid [a(a_{i}-a_{j})] ##.
Note that ## n\mid b ## if ## n\mid (ab) ## and ## gcd(n, a)=1 ## by Euclid's lemma.
Since ## gcd(a, n)=1 ##, it follows that ## n\mid (a_{i}-a_{j})\implies a_{i}\equiv a_{j}\pmod {n} ##.
This is a contradiction because ## a_{i}\not\equiv a_{j}\pmod {n} ##, given that ## a_{1}, a_{2}, ..., a_{n} ## is a complete set of residues modulo ## n ## and ## gcd(a, n)=1 ##.
Therefore, if ## a_{1}, a_{2}, ..., a_{n} ## is a complete set of residues modulo ## n ## and ## gcd(a, n)=1 ##, then ## aa_{1}, aa_{2}, ..., aa_{n} ## is also a complete set of residues modulo ## n ##.