- #1
Math100
- 802
- 222
- Homework Statement
- If ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ##, prove that ## b\equiv c\pmod {n} ##, where the integer ## n=gcd(n_{1}. n_{2}) ##.
- Relevant Equations
- None.
Proof:
Suppose ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ## where the integer ## n=gcd(n_{1}, n_{2}) ##.
Then ## a-b=n_{1}k_{1} ## and ## a-c=n_{2}k_{2} ## for some ## k_{1}, k_{2}\in\mathbb{Z} ##.
This means ## b-c=n_{2}k_{2}-n_{1}k_{1} ##.
Since ## n=gcd(n_{1}, n_{2}) ##, it follows that ## n_{1}=qn ## and ## n_{2}=tn ## with ## gcd(q, t)=1 ##.
Thus ## b-c=tnk_{2}-qnk_{1}=n(tk_{2}-qk_{1})\implies n\mid (b-c)\implies b\equiv c\pmod {n} ##.
Therefore, ## b\equiv c\pmod {n} ## if ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ##, where the integer ## n=gcd(n_{1}, n_{2}) ##.
Suppose ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ## where the integer ## n=gcd(n_{1}, n_{2}) ##.
Then ## a-b=n_{1}k_{1} ## and ## a-c=n_{2}k_{2} ## for some ## k_{1}, k_{2}\in\mathbb{Z} ##.
This means ## b-c=n_{2}k_{2}-n_{1}k_{1} ##.
Since ## n=gcd(n_{1}, n_{2}) ##, it follows that ## n_{1}=qn ## and ## n_{2}=tn ## with ## gcd(q, t)=1 ##.
Thus ## b-c=tnk_{2}-qnk_{1}=n(tk_{2}-qk_{1})\implies n\mid (b-c)\implies b\equiv c\pmod {n} ##.
Therefore, ## b\equiv c\pmod {n} ## if ## a\equiv b\pmod {n_{1}} ## and ## a\equiv c\pmod {n_{2}} ##, where the integer ## n=gcd(n_{1}, n_{2}) ##.