- #1
lordianed
- 23
- 7
Homework Statement
Let ##f## be defined by ##f(x) = x## if ##x## is rational, and ##f(x) = -x## if ##x## is irrational, prove that ##\lim_{x\to a} f(x)## exists if and only if ##a=0##.
Homework Equations
Epsilon-delta definition of a limit: ##\lim_{x\to a}f(x) = l## means that for every ##\epsilon > 0## there exists a ##\delta >0## such that for all ##x##, if ##0<|x-a|<\delta##, then ##|f(x)-l|<\epsilon##.
Its negation: There exists some ##\epsilon >0## such that for all ##\delta >0##, there exists some ##x## for which ##0<|x-a|<\delta## but not ##|f(x)-l|<\epsilon##.
The Attempt at a Solution
[/B]
##(\Leftarrow)##
Suppose that ##a = 0##, I guess guess that ##\lim_{x\to 0}f(x) = 0##. Let ##\epsilon > 0## be arbitrary and choose ##\delta = \epsilon##. For all ##x## that satisfy ##0<|x|<\delta##, ##x## is either rational or irrational. If ##x## is rational, then ##|f(x)| = |x| < \epsilon##; otherwise if ##x## is irrational, then ##|f(x)| = |-x| = |x| <\epsilon##, then by definition ##\lim_{x\to 0}f(x) = 0##.
##(\Rightarrow)##
Attempting a proof by contrapositive: Suppose that ##a \neq 0##, and let ##l## be arbitrary, then it must be shown that for some ##\epsilon >0##, for all ##\delta >0##, there exists some ##x## for which ##0<|x-a|<\delta## but not ##|f(x)-l|<\epsilon##.
This step is problematic for me, I am unable to find such an ##\epsilon##, I know that it most likely has to be related to ##\delta##, but I am unable to systematically find it. Any help would be greatly appreciated :)