- #1
docnet
Gold Member
- 799
- 486
- Homework Statement
- .
- Relevant Equations
- .
##f(z)## is holomorphic on ##\Omega## so f(z) satisfies the C.R. equations, i.e.,
for ##f(z)=u+iv##
##u_x=v_y##
##u_y=-v_x##
and for ##-f(z)=-u-iv##
##u_x=v_y \Rightarrow -u_x=-v_y##
##u_y=-v_x\Rightarrow -u_y=v_x##
so -f(z) satisfies the C.R. equations and hence ##-f(z)## is holomorphic on ##\Omega##.
##|f(z_0)|\leq |f(z)|\Rightarrow |-f(z_0)|\geq |-f(z)|##
## |-f(z_0)|=sup_{z\in\Omega}|f(z)| \Rightarrow ## -f(z) is onstant in ##\Omega## by the maximum principle. f(z) is constant in ##\Omega##.