- #1
issacnewton
- 1,041
- 37
HelloI wish to prove that
\[ \forall\;n\in \mathbb{N}\; n! \leqslant n^n \]
First we let \(n\) be arbitrary. Now I first write \( n! \) as \( n\cdot(n-1)\cdot(n-2)\cdots 3\cdot 2\cdot 1\).
Now we see that
\[ n \geqslant (n-1)\;; n \geqslant (n-2)\;\ldots ;n \geqslant n- (n-1) \]
So we get
\[ n\cdot(n-1)\cdot(n-2)\cdots 3\cdot 2\cdot 1 \leqslant \underbrace{n\cdot n\cdot n\cdots n}_\text{n times} \]
\[ \Rightarrow n! \leqslant n^n \]
Since \(n\) is arbitrary, the result is generally true. I want to use this result to find the limit of \( (n!)^{1/n^2 } \)
using the Squeeze theorem. So is my proof correct ?
Thanks
\[ \forall\;n\in \mathbb{N}\; n! \leqslant n^n \]
First we let \(n\) be arbitrary. Now I first write \( n! \) as \( n\cdot(n-1)\cdot(n-2)\cdots 3\cdot 2\cdot 1\).
Now we see that
\[ n \geqslant (n-1)\;; n \geqslant (n-2)\;\ldots ;n \geqslant n- (n-1) \]
So we get
\[ n\cdot(n-1)\cdot(n-2)\cdots 3\cdot 2\cdot 1 \leqslant \underbrace{n\cdot n\cdot n\cdots n}_\text{n times} \]
\[ \Rightarrow n! \leqslant n^n \]
Since \(n\) is arbitrary, the result is generally true. I want to use this result to find the limit of \( (n!)^{1/n^2 } \)
using the Squeeze theorem. So is my proof correct ?
Thanks