- #1
jfierro
- 20
- 1
Hello again. I recently submitted a thread asking for feedback on a couple of very basic proofs for an exercise from the book "How To Prove It" by Velleman. This is another request for you to help me understand how wrong my proof for a new exercise could be improved.
1. Homework Statement
Exercise 3.2.8. Suppose that a and b are nonzero real numbers. Prove that if a < 1/a < b < 1/b then a < -1.
My proof uses three other facts, the first one of which is proven in a previous exercise. The second and third ones I didn't bother proving since I consider them to be rather trivial.
"By the contrapositive of ## 0 < a < b \to \frac{1}{b} < \frac{1}{a} ## we can conclude that ## \frac{1}{a} \le \frac{1}{b} \to a \le 0 \vee b \le a ##. But then since ## b > a ## and ## a \ne 0 ##, it follows that ## a < 0 ##. Now suppose that ## -1 < a < 0 ##. Since ## a < 0 \to \frac{1}{a} < 0 ##, we know that ## \frac{1}{a} < 0 ##. Therefore, ## -\frac{1}{a} > 0 ##. This means that we can multiply both sides of the ## -1 < a ## inequality by ## -\frac{1}{a} ## to obtain ## \frac{1}{a} < -1 ##. However, we assumed that ## -1 < a ##. This would mean that ## \frac{1}{a} < a ##, which is a contradiction. Therefore, it must be the case that ## a \le -1 ##. We can also discard the ## a = -1 ## case because we would arrive at ## a = \frac{1}{a} ##, which is another contradiction. Thus, ## a < -1 ##."
1. Homework Statement
Exercise 3.2.8. Suppose that a and b are nonzero real numbers. Prove that if a < 1/a < b < 1/b then a < -1.
Homework Equations
My proof uses three other facts, the first one of which is proven in a previous exercise. The second and third ones I didn't bother proving since I consider them to be rather trivial.
- ## 0 < a < b \to \frac{1}{b} < \frac{1}{a} ##
- ## a < 0 \to \frac{1}{a} < 0 ##
- ## a < 0 \to -a > 0 ##
The Attempt at a Solution
"By the contrapositive of ## 0 < a < b \to \frac{1}{b} < \frac{1}{a} ## we can conclude that ## \frac{1}{a} \le \frac{1}{b} \to a \le 0 \vee b \le a ##. But then since ## b > a ## and ## a \ne 0 ##, it follows that ## a < 0 ##. Now suppose that ## -1 < a < 0 ##. Since ## a < 0 \to \frac{1}{a} < 0 ##, we know that ## \frac{1}{a} < 0 ##. Therefore, ## -\frac{1}{a} > 0 ##. This means that we can multiply both sides of the ## -1 < a ## inequality by ## -\frac{1}{a} ## to obtain ## \frac{1}{a} < -1 ##. However, we assumed that ## -1 < a ##. This would mean that ## \frac{1}{a} < a ##, which is a contradiction. Therefore, it must be the case that ## a \le -1 ##. We can also discard the ## a = -1 ## case because we would arrive at ## a = \frac{1}{a} ##, which is another contradiction. Thus, ## a < -1 ##."