- #1
Grupax
- 1
- 0
let $F_{n}$ the nth fibonacci number. Prove that if $a \geq 2$ divide $F_{n}$ then for every $d \geq 1$ we have $$a^{d}\mid F_{a^{d-1}n}.$$ I think we can use the formula $$F_{kn}= \underset{i=1}{\overset{k}{\sum}} \dbinom{k}{i}F_{i}F_{n}^{i}F_{n-1}^{k-i}$$ and the well know property that if $b \mid c$ then $F_{b} \mid F_{c}$ but I haven't find the solution yet.