- #1
docnet
Gold Member
- 799
- 486
- Homework Statement
- Let ##X## be a topological space so that, for any topological space ##Y##, any map ##f:X\longrightarrow Y## is continuous. Prove that ##X## is the discrete topology.
- Relevant Equations
- None
Sketch of proof:
##1.## Let ##V## be open in ##Y##.
##2.## For arbitrary ##f:X\longrightarrow Y## and for arbitrary ##V##, ##f^{-1}(V)## is in ##X##.
##3.## ##f:X\longrightarrow Y## is continuous, so ##f^{-1}(V)## is open in ##X##.
##4.## Every subset ##f^{-1}(V)## of ##X## is open, so ##X## is equipped with the discrete topology.Question: are "member" and "element" interchangeable terms in mathematics?
Question: Is it necessary to define an open-set cover of ##X## composed of ##f^{-1}(V)##?
##1.## Let ##V## be open in ##Y##.
##2.## For arbitrary ##f:X\longrightarrow Y## and for arbitrary ##V##, ##f^{-1}(V)## is in ##X##.
##3.## ##f:X\longrightarrow Y## is continuous, so ##f^{-1}(V)## is open in ##X##.
##4.## Every subset ##f^{-1}(V)## of ##X## is open, so ##X## is equipped with the discrete topology.Question: are "member" and "element" interchangeable terms in mathematics?
Question: Is it necessary to define an open-set cover of ##X## composed of ##f^{-1}(V)##?