- #1
Math100
- 802
- 221
- Homework Statement
- Prove that if ## n>2 ##, then there exists a prime ## p ## satisfying ## n<p<n! ##.
- Relevant Equations
- None.
Proof:
Assume to the contrary that ## n!-1 ## is not prime.
That is, ## n!-1 ## is composite.
Let ## p ## be a prime factor of ## n!-1 ## such that ## n<p ## for some ## n\in\mathbb{N} ##
where ## n>2 ##.
Since ## p\mid (n!-1) ##, it follows that ## p\nmid n! ##.
This means ## p\nleq n ##.
Note that ## p\leq n!-1 ##,
because ## p\mid (n!-1) ##.
Thus ## n<p<n! ##.
Therefore, if ## n>2 ##, then there exists a prime ## p ## satisfying ## n<p<n! ##.
Assume to the contrary that ## n!-1 ## is not prime.
That is, ## n!-1 ## is composite.
Let ## p ## be a prime factor of ## n!-1 ## such that ## n<p ## for some ## n\in\mathbb{N} ##
where ## n>2 ##.
Since ## p\mid (n!-1) ##, it follows that ## p\nmid n! ##.
This means ## p\nleq n ##.
Note that ## p\leq n!-1 ##,
because ## p\mid (n!-1) ##.
Thus ## n<p<n! ##.
Therefore, if ## n>2 ##, then there exists a prime ## p ## satisfying ## n<p<n! ##.