- #1
lfdahl
Gold Member
MHB
- 749
- 0
Problem: Suppose that a natural number $n$ is an odd perfect number, i.e.:
$n$ is odd and $n$ is equal to the sum of all its positive divisors (including $1$ and excluding $n$).Prove that $n$ is not divisible by $105$.P.S.: To this day, no one knows, whether such a number exists. Here
is a comment on the subject from Wolfram Mathworld.
$n$ is odd and $n$ is equal to the sum of all its positive divisors (including $1$ and excluding $n$).Prove that $n$ is not divisible by $105$.P.S.: To this day, no one knows, whether such a number exists. Here
is a comment on the subject from Wolfram Mathworld.
Last edited: