- #1
Math100
- 802
- 222
- Homework Statement
- Let ## p_{n} ## denote the nth prime number. For ## n\geq 3 ##, prove that ## p_{n+3}^{2}<p_{n} p_{n+1} p_{n+2} ##.
[Hint: Note that ## p_{n+3}^{2}<4p_{n+2}^{2}<8p_{n+1} p_{n+2} ##.]
- Relevant Equations
- None.
Proof:
Let ## n\geq 3 ## be an integer.
Applying the Bertrand's Postulate produces:
## p_{n+1}<2p_{n} ##.
Then ## p_{n+3}<2p_{n+2} ##.
Thus ## p_{n+3}^{2}<4p_{n+2}^{2}<4p_{n+2} (2p_{n+1})=8p_{n+2} p_{n+1} ##.
Now we consider two cases.
Case #1: Suppose ## n=3 ##.
Then ## p_{6}^{2}=169<p_{3} p_{4} p_{5}=385 ##.
Thus ## p_{n+3}^{2}<p_{n} p_{n+1} p_{n+2} ## for ## n=3 ##.
Case #2: Suppose ## n=4 ##.
Then ## p_{7}^{2}=289<p_{4} p_{5} p_{6}=1001 ##.
Thus ## p_{n+3}^{2}<p_{n} p_{n+1} p_{n+2} ## for ## n=4 ##.
Therefore, ## p_{n+3}^{2}<p_{n} p_{n+1} p_{n+2} ## for ## n\geq 3 ##.
Let ## n\geq 3 ## be an integer.
Applying the Bertrand's Postulate produces:
## p_{n+1}<2p_{n} ##.
Then ## p_{n+3}<2p_{n+2} ##.
Thus ## p_{n+3}^{2}<4p_{n+2}^{2}<4p_{n+2} (2p_{n+1})=8p_{n+2} p_{n+1} ##.
Now we consider two cases.
Case #1: Suppose ## n=3 ##.
Then ## p_{6}^{2}=169<p_{3} p_{4} p_{5}=385 ##.
Thus ## p_{n+3}^{2}<p_{n} p_{n+1} p_{n+2} ## for ## n=3 ##.
Case #2: Suppose ## n=4 ##.
Then ## p_{7}^{2}=289<p_{4} p_{5} p_{6}=1001 ##.
Thus ## p_{n+3}^{2}<p_{n} p_{n+1} p_{n+2} ## for ## n=4 ##.
Therefore, ## p_{n+3}^{2}<p_{n} p_{n+1} p_{n+2} ## for ## n\geq 3 ##.