- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- Let P be a point on the curve ##x=t^2, y=\dfrac{1}{t}##. If the tangents to the curve at P meets the x- and y-axes at A and B respectively, prove that PA=2BP.
- Relevant Equations
- Parametric equations
My take;
##\dfrac{dy}{dx}=\dfrac{-1}{t^2}⋅\dfrac{1}{2t}=\dfrac{-1}{2t^3}##
The equation of the tangent line AB is given by;
##y-\dfrac{1}{t}=\dfrac{-1}{2t^3}(x-t^2)##
##ty=\dfrac{-1}{2t^2}(x-t^2)+1##
At point A, ##(x,y)=(3t^2,0)##
At point B, ##(x,y)=(0,1.5t)##
PA=##\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}##
=##\sqrt{(t^2-3t^2)^2+(\dfrac{1}{t}-0)^2}##
...
= ##\dfrac{\sqrt{4t^6+1}}{t}##
BP=##\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}##
=##\sqrt{(t^2-0)^2+(\dfrac{1}{t}-\dfrac{1.5}{t})^2}##
...
= ##\dfrac{\sqrt{4t^6+1}}{2t}##
it follows that ##\dfrac{PA}{BP}##=##\dfrac{\sqrt{4t^6+1}}{t}\div\dfrac{\sqrt{4t^6+1}}{2t}=2##
##⇒PA=2BP##thus proved.
insight welcome or other approach.
##\dfrac{dy}{dx}=\dfrac{-1}{t^2}⋅\dfrac{1}{2t}=\dfrac{-1}{2t^3}##
The equation of the tangent line AB is given by;
##y-\dfrac{1}{t}=\dfrac{-1}{2t^3}(x-t^2)##
##ty=\dfrac{-1}{2t^2}(x-t^2)+1##
At point A, ##(x,y)=(3t^2,0)##
At point B, ##(x,y)=(0,1.5t)##
PA=##\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}##
=##\sqrt{(t^2-3t^2)^2+(\dfrac{1}{t}-0)^2}##
...
= ##\dfrac{\sqrt{4t^6+1}}{t}##
BP=##\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}##
=##\sqrt{(t^2-0)^2+(\dfrac{1}{t}-\dfrac{1.5}{t})^2}##
...
= ##\dfrac{\sqrt{4t^6+1}}{2t}##
it follows that ##\dfrac{PA}{BP}##=##\dfrac{\sqrt{4t^6+1}}{t}\div\dfrac{\sqrt{4t^6+1}}{2t}=2##
##⇒PA=2BP##thus proved.
insight welcome or other approach.