- #1
fabiancillo
- 27
- 1
I was studying uniform convergence. I have doubts
a) Prove that series $\displaystyle\sum_{n=1}^\infty{\displaystyle\frac{ln(1+nx)}{nx^n}}$
converges uniformly on the set $ S = [2, \infty) $.
b Prove that series $\displaystyle\sum_{n=1}^\infty{(-1)^{n+1} \displaystyle\frac{e^{-nt}}{\sqrt[ ]{n+t^2}}}$
converges uniformly on the set $ S = [0, \infty) $.
My attempt:
a) The fuctions $f_n(x)=\displaystyle\frac{ln(1+nx)}{nx^n}$ are decreasing (I don't how prove). Therefore $|f_n(x)|\leq f_n(2)$
b) I do not know how to start
Thanks
a) Prove that series $\displaystyle\sum_{n=1}^\infty{\displaystyle\frac{ln(1+nx)}{nx^n}}$
converges uniformly on the set $ S = [2, \infty) $.
b Prove that series $\displaystyle\sum_{n=1}^\infty{(-1)^{n+1} \displaystyle\frac{e^{-nt}}{\sqrt[ ]{n+t^2}}}$
converges uniformly on the set $ S = [0, \infty) $.
My attempt:
a) The fuctions $f_n(x)=\displaystyle\frac{ln(1+nx)}{nx^n}$ are decreasing (I don't how prove). Therefore $|f_n(x)|\leq f_n(2)$
b) I do not know how to start
Thanks