- #1
Math100
- 802
- 222
- Homework Statement
- Prove that, for ## x\geq 2 ##, ## \sum_{n\leq x}\frac{\phi(n)}{\sqrt{n}}=Cx^{3\2}+O(x^{1/2}\log {x}) ##, where ## C ## is a constant that you should determine.
- Relevant Equations
- If ## \alpha\leq 1 ## and ## x\geq 2 ##, then ## \sum_{n\leq x}\frac{\phi(n)}{n^{\alpha}}=\frac{x^{2-\alpha}}{2-\alpha}\frac{1}{\zeta(2)}+O(x^{1-\alpha}\log {x}) ##.
Proof:
Let ## x\geq 2 ##.
Then ## \sum_{n\leq x}\frac{\phi(n)}{n^{\alpha}}=\sum_{d\leq x}\frac{\mu(d)}{d^{\alpha}}\sum_{q\leq \frac{x}{d}}\frac{1}{q^{\alpha-1}} ##.
Observe that
\begin{align*}
&\sum_{n\leq x}\frac{\phi(n)}{\sqrt{n}}=\sum_{d\leq x}\frac{\mu(d)}{\sqrt{d}}\sum_{q\leq \frac{x}{d}}\sqrt{q}\\
&=\sum_{d\leq x}\frac{\mu(d)}{\sqrt{d}}(\frac{2}{3}(x/d)^{3/2}+O(\sqrt{x/d}))\\
&=\frac{2}{3}x^{3/2}\sum_{d\leq x}\frac{\mu(d)}{d^{2}}+O(\sqrt{x}\sum_{d\leq x}\frac{\mu(d)}{d})\\
&=\frac{2}{3}x^{3/2}\frac{1}{\zeta(2)}-\frac{2}{3}x^{3/2}\sum_{d>x}\frac{\mu(d)}{d^{2}}+O(\sqrt{x}\log {x})\\
&=\frac{2}{3}x^{3/2}\frac{1}{\zeta(2)}+O(\sqrt{x})+O(\sqrt{x}\log {x})\\
&=\frac{2}{3}x^{3/2}\frac{6}{\pi^{2}}+O(\sqrt{x}+\sqrt{x}\log {x})\\
&=\frac{4}{\pi^{2}}x^{3/2}+O(x^{1/2}\log {x}).\\
\end{align*}
Therefore, ## \sum_{n\leq x}\frac{\phi(n)}{\sqrt{n}}=Cx^{3/2}+O(x^{1/2}\log {x}) ##, where ## C=\frac{4}{\pi^{2}} ## is a constant.
Let ## x\geq 2 ##.
Then ## \sum_{n\leq x}\frac{\phi(n)}{n^{\alpha}}=\sum_{d\leq x}\frac{\mu(d)}{d^{\alpha}}\sum_{q\leq \frac{x}{d}}\frac{1}{q^{\alpha-1}} ##.
Observe that
\begin{align*}
&\sum_{n\leq x}\frac{\phi(n)}{\sqrt{n}}=\sum_{d\leq x}\frac{\mu(d)}{\sqrt{d}}\sum_{q\leq \frac{x}{d}}\sqrt{q}\\
&=\sum_{d\leq x}\frac{\mu(d)}{\sqrt{d}}(\frac{2}{3}(x/d)^{3/2}+O(\sqrt{x/d}))\\
&=\frac{2}{3}x^{3/2}\sum_{d\leq x}\frac{\mu(d)}{d^{2}}+O(\sqrt{x}\sum_{d\leq x}\frac{\mu(d)}{d})\\
&=\frac{2}{3}x^{3/2}\frac{1}{\zeta(2)}-\frac{2}{3}x^{3/2}\sum_{d>x}\frac{\mu(d)}{d^{2}}+O(\sqrt{x}\log {x})\\
&=\frac{2}{3}x^{3/2}\frac{1}{\zeta(2)}+O(\sqrt{x})+O(\sqrt{x}\log {x})\\
&=\frac{2}{3}x^{3/2}\frac{6}{\pi^{2}}+O(\sqrt{x}+\sqrt{x}\log {x})\\
&=\frac{4}{\pi^{2}}x^{3/2}+O(x^{1/2}\log {x}).\\
\end{align*}
Therefore, ## \sum_{n\leq x}\frac{\phi(n)}{\sqrt{n}}=Cx^{3/2}+O(x^{1/2}\log {x}) ##, where ## C=\frac{4}{\pi^{2}} ## is a constant.