- #1
Math100
- 797
- 221
- Homework Statement
- Prove that the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ## admit a simultaneous solution if and only if ## gcd(n, m)\mid (a-b); ## if a solution exists, confirm that it is unique modulo ## lcm(n, m) ##.
- Relevant Equations
- None.
Proof:
Consider the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ##.
Suppose ## \exists ## a solution for ## x ##.
Let ## d=gcd(n, m) ##.
This means ## \exists r, s\in\mathbb{Z} ## such that ## n=dr ## and ## m=ds ##.
Then ## x\equiv a\pmod {n}\implies x=a+nt, t\in\mathbb{Z}, x\equiv b\pmod {m}\implies x=b+mk, k\in\mathbb{Z} ##.
Now we have ## a+nt=b+mk\implies nt-mk=b-a ##.
Observe that substituting for ## m, n ## produces:
## d(sk-rt)=a-b ##.
Thus, ## d=gcd(n, m)\mid (a-b) ##.
Conversely, suppose ## gcd(n, m)\mid (a-b) ##.
Then ## d=gcd(m, n) ## and ## d\mid (a-b) ##.
This means ## dt=a-b ## for some ## t\in\mathbb{Z} ## such that ## d=nx_{0}+my_{0} ##.
Observe that ## dt=nx_{0}t+my_{0}t=a-b\implies my_{0}t+b=a-nx_{0}t ##.
Let ## x\equiv a\pmod {n}, x\equiv b\pmod {m} ## and ## y ## be any other solution.
Since ## y\equiv a\pmod {n} ## and ## y\equiv b\pmod {m} ##,
it follows that ## x\equiv y\pmod {n} ## and ## x\equiv y\pmod {m} ##.
Thus, ## \exists ## a simultaneous solution.
Therefore, the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ## admit a simultaneous solution
if and only if ## gcd(n, m)\mid (a-b); ## and a solution exists, hence, ## x\equiv y\pmod {lcm(m, n)} ##.
Consider the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ##.
Suppose ## \exists ## a solution for ## x ##.
Let ## d=gcd(n, m) ##.
This means ## \exists r, s\in\mathbb{Z} ## such that ## n=dr ## and ## m=ds ##.
Then ## x\equiv a\pmod {n}\implies x=a+nt, t\in\mathbb{Z}, x\equiv b\pmod {m}\implies x=b+mk, k\in\mathbb{Z} ##.
Now we have ## a+nt=b+mk\implies nt-mk=b-a ##.
Observe that substituting for ## m, n ## produces:
## d(sk-rt)=a-b ##.
Thus, ## d=gcd(n, m)\mid (a-b) ##.
Conversely, suppose ## gcd(n, m)\mid (a-b) ##.
Then ## d=gcd(m, n) ## and ## d\mid (a-b) ##.
This means ## dt=a-b ## for some ## t\in\mathbb{Z} ## such that ## d=nx_{0}+my_{0} ##.
Observe that ## dt=nx_{0}t+my_{0}t=a-b\implies my_{0}t+b=a-nx_{0}t ##.
Let ## x\equiv a\pmod {n}, x\equiv b\pmod {m} ## and ## y ## be any other solution.
Since ## y\equiv a\pmod {n} ## and ## y\equiv b\pmod {m} ##,
it follows that ## x\equiv y\pmod {n} ## and ## x\equiv y\pmod {m} ##.
Thus, ## \exists ## a simultaneous solution.
Therefore, the congruences ## x\equiv a\pmod {n} ## and ## x\equiv b\pmod {m} ## admit a simultaneous solution
if and only if ## gcd(n, m)\mid (a-b); ## and a solution exists, hence, ## x\equiv y\pmod {lcm(m, n)} ##.