Prove that the expression is divisible by 26460

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    Expression
In summary: True, my mistake. Though it's not too difficult to check, just do the same operations but using 4, 27 and 49... (which still work out, it's clear the integers in the problem were carefully chosen to cancel each other out)But I think what you had in mind is:$$27195^8 - 10887^8 + 10152^8 \equiv (2^2 \cdot 3^3 \cdot 5^1 \cdot 7^2)^2 \cdot (2^2 \cdot 3^3 \cdot 5^1 \cdot 7^2)^6 - 0^8 + 0^8 \equiv 0 \pmod{(
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Problem:
Prove that $27195^8-10887^8+10152^8$ is divisible by $26460$.

Attempt:
I grouped the last two terms and manipulated them algebraically and came to the point where I suspect I might have taken the wrong path...here is the last step where I stopped and don't know how to proceed.

$\dfrac{27195^8-10887^8+10152^8}{26460}=\dfrac{3^5\cdot5^7\cdot7^{14}\cdot37^8-7013(2^6\cdot3^6\cdot47^2+3^2\cdot19^2\cdot191^2)(10152^4+10887^4)}{8}$

I'd like to ask, do you think this problem can be solved using only elementary methods?

Thanks in advance.
 
Last edited by a moderator:
Mathematics news on Phys.org
  • #2
anemone said:
Problem:
Prove that $27195^8-10887^8+10152^8$ is divisible by $26460$.

Attempt:
I grouped the last two terms and manipulated them algebraically and came to the point where I suspect I might have taken the wrong path...here is the last step where I stopped and don't know how to proceed.

$\dfrac{27195^8-10887^8+10152^8}{26460}=\dfrac{3^5\cdot5^7\cdot7^{14}\cdot37^8-7013(2^6\cdot3^6\cdot47^2+3^2\cdot19^2\cdot191^2)(10152^4+10887^4)}{8}$

I'd like to ask, do you think this problem can be solved using only elementary methods?

Thanks in advance.
The best way to make the calculation more manageable is to factorise $26460 = 2^2\cdot 3^3\cdot 5\cdot 7^2$. If you can separately show that $27195^8-10887^8+10152^8$ is divisible by each of the numbers $2^2$, $3^3$, $5$ and $7^2$, then the result will follow.

Take the factor 5, for example. Since $27195$ is a multiple of $5$, so is its eighth power. The other two terms are not multiples of $5$, but here you need to use your idea of grouping those two terms together. In fact, $a^8-b^8$ is a multiple of $a-b$. So $10887^8+10152^8$ is a multiple of $10887-10152 = 735$. That is a multiple of $5$. Putting those results together, you see that $27195^8-10887^8+10152^8$ is a multiple of $5$.

The exact same procedure shows that $27195^8-10887^8+10152^8$ is a multiple of $7^2$. You can use similar ideas to show that it is also a multiple of $3^3$ and of $2^2$. (To deal with $3^3$, notice that $a^8-b^8$ is also a multiple of $a+b$.)
 
  • #3
Opalg said:
The best way to make the calculation more manageable is to factorise $26460 = 2^2\cdot 3^3\cdot 5\cdot 7^2$. If you can separately show that $27195^8-10887^8+10152^8$ is divisible by each of the numbers $2^2$, $3^3$, $5$ and $7^2$, then the result will follow.

Take the factor 5, for example. Since $27195$ is a multiple of $5$, so is its eighth power. The other two terms are not multiples of $5$, but here you need to use your idea of grouping those two terms together. In fact, $a^8-b^8$ is a multiple of $a-b$. So $10887^8+10152^8$ is a multiple of $10887-10152 = 735$. That is a multiple of $5$. Putting those results together, you see that $27195^8-10887^8+10152^8$ is a multiple of $5$.

The exact same procedure shows that $27195^8-10887^8+10152^8$ is a multiple of $7^2$. You can use similar ideas to show that it is also a multiple of $3^3$ and of $2^2$. (To deal with $3^3$, notice that $a^8-b^8$ is also a multiple of $a+b$.)

Awesome!:cool: I finally understand it now!

Thanks for your help, Opalg!
 
  • #4
Opalg's answer is very good! A more "heavy machinery" method could also go as follows:

$$26460 = 2^2 \cdot 3^3 \cdot 5^1 \cdot 7^2$$
And we can do the following reductions with a couple modulo operations:

$$27195^8 - 10887^8 + 10152^8 \equiv 3^8 - 3^8 + 0^8 \equiv 0 \pmod{2^2}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 6^8 - 6^8 + 0^8 \equiv 0 \pmod{3^3}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 2^8 + 2^8 \equiv 0 \pmod{5^1}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 9^8 + 9^8 \equiv 0 \pmod{7^2}$$
And invoking the CRT (since $2^2$, $3^3$, $5^1$, $7^2$ are pairwise coprime):

$$\mathbb{Z}_{26460} = \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^3} \times \mathbb{Z}_{5^1} \times \mathbb{Z}_{7^2}$$
$$\therefore$$
$$27195^8 - 10887^8 + 10152^8 \equiv 0 \pmod{26460}$$
This also shows that the exponent (8) is in fact irrelevant, and could be anything.

EDIT: fixed, see ILikeSerena's post below.
 
Last edited:
  • #5
Bacterius said:
Opalg's answer is very good! A more "heavy machinery" method could also go as follows:

$$26460 = 2^2 \cdot 3^3 \cdot 5^1 \cdot 7^2$$
And we can do the following reductions with a couple modulo operations:

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 0^8 + 0^8 \equiv 0 \pmod{2}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 0^8 + 0^8 \equiv 0 \pmod{3}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 2^8 + 2^8 \equiv 0 \pmod{5}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 2^8 + 2^8 \equiv 0 \pmod{7}$$
And invoking the CRT (since 2, 3, 5, 7 are pairwise coprime):

$$\mathbb{Z}_{26460} = \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^3} \times \mathbb{Z}_{5^1} \times \mathbb{Z}_{7^2}$$
$$\therefore$$
$$27195^8 - 10887^8 + 10152^8 \equiv 0 \pmod{26460}$$
This also shows that the exponent (8) is in fact irrelevant, and could be anything.

I'm afraid that the number $2 \cdot 3 \cdot 5 \cdot 7$ is also zero mod 2, mod 3, mod 5, and mod 7.
But it is not divisible by 26460.

For CRT you need to show the mod relation for $2^2$, $3^3$, $5^1$, and $7^2$.

For instance for $3^3$, we need:

$\hspace{0.5 in}27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 0^8 + 0^8 \equiv 0 \pmod{3^3}$

Still quite doable.
 
  • #6
ILikeSerena said:
I'm afraid that the number $2 \cdot 3 \cdot 5 \cdot 7$ is also zero mod 2, mod 3, mod 5, and mod 7.
But it is not divisible by 26460.

For CRT you need to show the mod relation for $2^2$, $3^3$, $5^1$, and $7^2$.

For instance for $3^3$, we need:

$\hspace{0.5 in}27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 0^8 + 0^8 \equiv 0 \pmod{3^3}$

Still quite doable.

True, my mistake. Though it's not too difficult to check, just do the same operations but using 4, 27 and 49... (which still work out, it's clear the integers in the problem were carefully chosen to cancel each other out)
 

FAQ: Prove that the expression is divisible by 26460

How do you prove that an expression is divisible by 26460?

In order to prove that an expression is divisible by 26460, you must show that when the expression is divided by 26460, the result is a whole number without any remainder.

What is the significance of 26460 in this expression?

26460 is a multiple of many different numbers, making it a useful number to use when checking for divisibility. It is also a highly composite number, meaning it has a lot of factors, making it easier to find a number that divides evenly into the expression.

Can you use any method to prove that an expression is divisible by 26460?

Yes, there are multiple methods that can be used to prove that an expression is divisible by 26460. Some common methods include long division, prime factorization, or using the divisibility rules for 26460 (which states that the expression must be divisible by 2, 3, 4, 5, 6, 9, 10, and 11).

What if the expression is not divisible by 26460?

If the expression is not divisible by 26460, it means that the expression does not have a factor of 26460 and therefore cannot be divided evenly by it. In this case, the expression may still be divisible by other numbers, and further testing would need to be done to determine its divisibility.

Why is it important to prove that an expression is divisible by 26460?

Proving that an expression is divisible by 26460 can be helpful in simplifying the expression and making it easier to work with. It can also provide insight into the factors of the expression and potentially lead to finding a solution to a larger problem. Additionally, it can help verify the accuracy of calculations and identify any potential errors.

Back
Top