- #1
fabiancillo
- 27
- 1
Hello, I don't know to solve this exercise:
Let $\mathcal{B}_\mathbb{R}$ the $\sigma-algebra$ Borel in $\mathbb{R}$ and let $\mu : \mathcal{B}_\mathbb{R} \rightarrow{} \mathbb{R}_{+}$ a finite measure. For each $x \in \mathbb{R}$ define
$$f_{\mu} := \mu((- \infty,x]) $$
Prove that:
a) $f_{\mu}$ is a monotonic non-decreasing function
b) $\mu((a,b]) = f_{\mu}(b)- f_{\mu}(a)$ for all $a,b \in \mathbb{R}$
The definition ($\sigma-algebra$ borel , is this:
Definition $\sigma-algebra$ Borel : Let $(X,\tau)$ a topological space. we define the borelian tribe associated with $(X, \tau)$ as the algebra generated by T, that is
$$\mathcal{B}(X)= \mathcal{B}(X,\tau)= \sigma (\tau)$$
I need a hint.Thanks
Let $\mathcal{B}_\mathbb{R}$ the $\sigma-algebra$ Borel in $\mathbb{R}$ and let $\mu : \mathcal{B}_\mathbb{R} \rightarrow{} \mathbb{R}_{+}$ a finite measure. For each $x \in \mathbb{R}$ define
$$f_{\mu} := \mu((- \infty,x]) $$
Prove that:
a) $f_{\mu}$ is a monotonic non-decreasing function
b) $\mu((a,b]) = f_{\mu}(b)- f_{\mu}(a)$ for all $a,b \in \mathbb{R}$
The definition ($\sigma-algebra$ borel , is this:
Definition $\sigma-algebra$ Borel : Let $(X,\tau)$ a topological space. we define the borelian tribe associated with $(X, \tau)$ as the algebra generated by T, that is
$$\mathcal{B}(X)= \mathcal{B}(X,\tau)= \sigma (\tau)$$
I need a hint.Thanks