- #1
chwala
Gold Member
- 2,752
- 387
- Homework Statement
- See attached.
- Relevant Equations
- Trigonometry
##2 \tan^{-1} \left(\dfrac{1}{5}\right)= \sin^{-1} \left(\dfrac{3}{5}\right) - \cos^{-1} \left(\dfrac{63}{65}\right)##Consider the rhs,
Let
##\sin^{-1} \left(\dfrac{3}{5}\right)= m## then ##\tan m =\dfrac{3}{4}##
also
let
##\cos^{-1} \left(\dfrac{63}{65}\right)= n## then ##\tan n=\dfrac{16}{63}##
Then,
##m-n=\tan^{-1} \left[\dfrac{\frac{3}{4}-\frac{16}{63}}{1+\dfrac{3}{4}⋅\dfrac{16}{63}}\right]##
##m-n=\tan^{-1}\left[\dfrac{\frac{125}{252}}{\frac{300}{252}}\right]##
##m-n=\tan^{-1}\left[\dfrac{125}{252}×\dfrac{252}{300}\right]##
##m-n= \tan^{-1}\left(\dfrac{5}{12}\right) = 22.6^0## to one decimal place.
on the lhs, we let
##2 \tan^{-1} \left(\dfrac{1}{5}\right) = p##
##\tan^{-1} \left(\dfrac{1}{5}\right)=\dfrac{p}{2}##
##\tan \dfrac{p}{2}=\dfrac{1}{5}##
let ##\dfrac{p}{2} = θ##
##\tan θ = \dfrac{1}{5}##
##θ = \tan^{-1} \left(\dfrac{1}{5}\right) = 11.3^0##
##p= 2 ×11.3=22.6^0##
I hope this has been done correctly, ... otherwise, your correction is welcome...there may be a better approach.
Last edited by a moderator: