- #1
Math100
- 802
- 222
- Homework Statement
- Prove that the Goldbach conjecture that every even integer greater than ## 2 ## is the sum of two primes is equivalent to the statement that every integer greater than ## 5 ## is the sum of three primes.
[Hint: If ## 2n-2=p_{1}+p_{2} ##, then ## 2n=p_{1}+p_{2}+2 ## and ## 2n+1=p_{1}+p_{2}+3.]
- Relevant Equations
- None.
Proof:
Let ## n ## be an integer.
Then ## 2n=p_{1}+p_{2} ## for ## n\geq 2 ## where ## p_{1} ## and ## p_{2} ## are primes.
Suppose ## n=k-1 ## for ## k\geq 3 ##.
Then ## 2(k-1)=p_{1}+p_{2} ##
## 2k-2=p_{1}+p_{2} ##
## 2k=p_{1}+p_{2}+2 ##.
Thus ## 2k+1=p_{1}+p_{2}+3 ##.
Therefore, the Goldbach conjecture that every even integer greater than ## 2 ## is the sum of
two primes is equivalent to the statement that every integer greater than ## 5 ## is the sum of three primes.
Let ## n ## be an integer.
Then ## 2n=p_{1}+p_{2} ## for ## n\geq 2 ## where ## p_{1} ## and ## p_{2} ## are primes.
Suppose ## n=k-1 ## for ## k\geq 3 ##.
Then ## 2(k-1)=p_{1}+p_{2} ##
## 2k-2=p_{1}+p_{2} ##
## 2k=p_{1}+p_{2}+2 ##.
Thus ## 2k+1=p_{1}+p_{2}+3 ##.
Therefore, the Goldbach conjecture that every even integer greater than ## 2 ## is the sum of
two primes is equivalent to the statement that every integer greater than ## 5 ## is the sum of three primes.