- #1
Math100
- 794
- 221
- Homework Statement
- Prove the following statement:
If ## gcd(a, n)=1 ##, then the integers ## c, c+a, c+2a, c+3a, ..., c+(n-1)a ## form a complete set of residues modulo ## n ## for any ## c ##.
- Relevant Equations
- None.
Proof:
Suppose for the sake of contradiction that ## r, s\in {0, ..., n-1} ## for ## r<s ## where ## c+ra\equiv c+sa\pmod {n} ##.
Then ## c+ra\equiv c+sa\pmod {n}\implies ra\equiv sa\pmod {n}\implies r\equiv s\pmod {n} ##.
Thus ## n\mid (r-s)\implies n<r-s ##, which is a contradiction because ## r\leq n-1 ## and ## s\leq n-1 ## together implies ## s-r<n ##.
Therefore, if ## gcd(a, n)=1 ##, then the integers ## c, c+a, c+2a, c+3a, ..., c+(n-1)a ## form a complete set of residues modulo ## n ## for any ## c ##.
Suppose for the sake of contradiction that ## r, s\in {0, ..., n-1} ## for ## r<s ## where ## c+ra\equiv c+sa\pmod {n} ##.
Then ## c+ra\equiv c+sa\pmod {n}\implies ra\equiv sa\pmod {n}\implies r\equiv s\pmod {n} ##.
Thus ## n\mid (r-s)\implies n<r-s ##, which is a contradiction because ## r\leq n-1 ## and ## s\leq n-1 ## together implies ## s-r<n ##.
Therefore, if ## gcd(a, n)=1 ##, then the integers ## c, c+a, c+2a, c+3a, ..., c+(n-1)a ## form a complete set of residues modulo ## n ## for any ## c ##.