- #1
etotheipi
Homework Statement:: The solution to the KG equation is assumed to take the form$$\Phi = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{r} \phi_{lm}(t,r) Y_{lm}(\theta, \phi)$$
Relevant Equations:: N/A
To first show that $$\left[ \frac{\partial^2}{\partial t^2} - \frac{d^2}{dr_*^2} + V_l(r_*)\right] \phi_{lm} =0$$ where ##V_l(r_*) = \left( 1- \dfrac{2M}{r}\right)\left( \dfrac{l(l+1)}{r^2} + \dfrac{2M}{r^3} + \mu^2 \right)## and ##r_*## is the tortoise coordinate. I have worked out that ##
\dfrac{d^2 \phi_{lm}}{dr_*^2} = \dfrac{d}{dr_*} \left( \dfrac{dr}{dr_*} \dfrac{d\phi_{lm}}{dr} \right) = \dfrac{d^2 r}{dr_*^2} \dfrac{d\phi_{lm}}{dr} + \left( \dfrac{dr}{dr_*} \right)^2 \dfrac{d^2 \phi_{lm}}{dr^2}## and since ##r_* := r + 2M \ln{ \left| \frac{r}{2M} - 1 \right|}## then write the following:\begin{align*}
\frac{dr_*}{dr} = \frac{1}{1- \frac{2M}{r}} \implies \frac{dr}{dr_*} = 1- \frac{2M}{r} \\
\frac{d^2 r}{dr_*^2} = \frac{dr}{dr_*} \frac{d}{dr} \left( \frac{dr}{dr_*} \right) = \frac{2M}{r^2} \left( 1- \frac{2M}{r} \right) \\ \\
\implies \frac{d^2 \phi_{lm}}{dr_*^2} = \left( 1- \frac{2M}{r} \right) \left[ \frac{2M}{r^2} \frac{d\phi_{lm}}{dr} + \left(1 - \frac{2M}{r} \right) \frac{d^2 \phi_{lm}}{dr^2} \right]
\end{align*}What do I need to do next? \begin{align*}
\nabla_{\mu} \nabla^{\mu} \Phi - \mu^2 \Phi = 0 \\
\frac{1}{r} \phi_{lm}(t,r) \nabla_{\mu} \nabla^{\mu} Y_{lm} (\theta, \phi) + Y_{lm} (\theta, \phi) \nabla_{\mu} \nabla^{\mu} \left( \frac{1}{r} \phi_{lm}(t,r) \right) - \mu^2 \Phi = 0
\end{align*}What is the functional form of ##\phi_{lm}(t,r)##? Should I try to look for a solution ##\phi_{lm}(t,r) = T(t)R(r)##?
Relevant Equations:: N/A
To first show that $$\left[ \frac{\partial^2}{\partial t^2} - \frac{d^2}{dr_*^2} + V_l(r_*)\right] \phi_{lm} =0$$ where ##V_l(r_*) = \left( 1- \dfrac{2M}{r}\right)\left( \dfrac{l(l+1)}{r^2} + \dfrac{2M}{r^3} + \mu^2 \right)## and ##r_*## is the tortoise coordinate. I have worked out that ##
\dfrac{d^2 \phi_{lm}}{dr_*^2} = \dfrac{d}{dr_*} \left( \dfrac{dr}{dr_*} \dfrac{d\phi_{lm}}{dr} \right) = \dfrac{d^2 r}{dr_*^2} \dfrac{d\phi_{lm}}{dr} + \left( \dfrac{dr}{dr_*} \right)^2 \dfrac{d^2 \phi_{lm}}{dr^2}## and since ##r_* := r + 2M \ln{ \left| \frac{r}{2M} - 1 \right|}## then write the following:\begin{align*}
\frac{dr_*}{dr} = \frac{1}{1- \frac{2M}{r}} \implies \frac{dr}{dr_*} = 1- \frac{2M}{r} \\
\frac{d^2 r}{dr_*^2} = \frac{dr}{dr_*} \frac{d}{dr} \left( \frac{dr}{dr_*} \right) = \frac{2M}{r^2} \left( 1- \frac{2M}{r} \right) \\ \\
\implies \frac{d^2 \phi_{lm}}{dr_*^2} = \left( 1- \frac{2M}{r} \right) \left[ \frac{2M}{r^2} \frac{d\phi_{lm}}{dr} + \left(1 - \frac{2M}{r} \right) \frac{d^2 \phi_{lm}}{dr^2} \right]
\end{align*}What do I need to do next? \begin{align*}
\nabla_{\mu} \nabla^{\mu} \Phi - \mu^2 \Phi = 0 \\
\frac{1}{r} \phi_{lm}(t,r) \nabla_{\mu} \nabla^{\mu} Y_{lm} (\theta, \phi) + Y_{lm} (\theta, \phi) \nabla_{\mu} \nabla^{\mu} \left( \frac{1}{r} \phi_{lm}(t,r) \right) - \mu^2 \Phi = 0
\end{align*}What is the functional form of ##\phi_{lm}(t,r)##? Should I try to look for a solution ##\phi_{lm}(t,r) = T(t)R(r)##?
Last edited by a moderator: