- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Smile)
I want to prove that at the field $\mathbb{Q}_p$, where $p$ is a prime, it stands:
$$-1=\sum_{0}^{\infty} (p-1)p^i$$
That's what I have tried so far:$$-1=\sum_{i=0}^{\infty}(p-1)p^i =(p-1)+(p-1)p+(p-1)p^2+\dots \\ \Rightarrow 1-1=1+p-1+p^2-p+p^2-p^2+\dots \\ \Rightarrow 0=(1-1)+(p-p)+(p^2-p^2)+\dots$$
How can I continue? (Thinking)
I want to prove that at the field $\mathbb{Q}_p$, where $p$ is a prime, it stands:
$$-1=\sum_{0}^{\infty} (p-1)p^i$$
That's what I have tried so far:$$-1=\sum_{i=0}^{\infty}(p-1)p^i =(p-1)+(p-1)p+(p-1)p^2+\dots \\ \Rightarrow 1-1=1+p-1+p^2-p+p^2-p^2+\dots \\ \Rightarrow 0=(1-1)+(p-p)+(p^2-p^2)+\dots$$
How can I continue? (Thinking)