- #1
Smazmbazm
- 45
- 0
Homework Statement
Let B be the linear operator
[itex](1-x^{2}) \frac{d^2}{dx^2}-x\frac{d}{dx}[/itex]
Show that
[itex]T_{4}(x) = 8x^{4} - 8x^{2} + 1[/itex]
is an eigenvector of B, and find the corresponding eigenvalue.
Attempt
Righto, I find these rather difficult so a step by step solution would be nice but I know that's a lot of typing and formatting so I'm grateful for any corrections.
Step 1: [itex]Bv_{4} = \lambda _{4} v_{4}[/itex]
Step 2: [itex]((1-x^{2}) \frac{d^2}{dx^2}-x\frac{d}{dx})(8x^{4} - 8x^{2} + 1) = \lambda _{4} (8x^{4} - 8x^{2} + 1)[/itex]
Step 3: This is the first point where I'm unsure of what comes next. Should I be doing something like this
[itex]\frac{d^2}{dx^2}((1-x^{2})(8x^{4} - 8x^{2} + 1)) - x\frac{d}{dx}(8x^{4} - 8x^{2} + 1) = 8\lambda _{4}x^{4} - 8\lambda _{4}x^{2} + \lambda _{4}
\\ \frac{d^2}{dx^2}(-8 x^6 +16 x^4 -9 x^2 + 1) - \frac{d}{dx}(8x^{5} - 8x^{3} + x) = 8\lambda _{4}x^{4} - 8\lambda _{4}x^{2} + \lambda _{4}
\\ -240x^4 + 192x^2 - 18 - 40x^4 + 18x^2 - 1 = 8\lambda _{4}x^{4} - 8\lambda _{4}x^{2} + \lambda _{4}
\\ -280x^4 + 216x^2 - 19 = 8\lambda _{4}x^{4} - 8\lambda _{4}x^{2} + \lambda _{4}[/itex]
Is this all correct so far? If so, awesome. Now I don't really know how to go about solving for [itex]\lambda[/itex]
In general, is it enough to say that [itex]\lambda = \frac{-280x^4 + 216x^2 - 19}{8x^{4}- 8x^{2} + 1}[/itex]
Last edited: