- #1
Math100
- 797
- 221
- Homework Statement
- Prove that whenever ## ab\equiv cd\pmod {n} ## and ## b\equiv d\pmod {n} ##, with ## gcd(b, n)=1 ##, then ## a\equiv c\pmod {n} ##.
- Relevant Equations
- None.
Proof:
Suppose ## ab\equiv cd\pmod {n} ## and ## b\equiv d\pmod {n} ##, with ## gcd(b, n)=1 ##.
Then ## n\mid (ab-cd)\implies nk=ab-cd ## and ## n\mid (b-d)\implies nq=b-d ## for some ## k, q\in\mathbb{Z} ##.
This means ## d=b-nq ##.
Now we substitute ## d=b-nq ## into the equation ## nk=ab-cd ##.
Observe that
\begin{align*}
nk=ab-c(b-nq)\\
nk=ab-bc+cnq\\
nk-cnq=b(a-c)\\
n(k-cq)=b(a-c)\\
nr=b(a-c)\\
\end{align*}
where ## r=k-cq ## is an integer.
Thus ## n\mid [b(a-c)] ##.
Note that ## b\mid m ## if ## b\mid (mn) ## and ## gcd(b, n)=1 ##.
Since ## n\mid [b(a-c)] ## and ## gcd(b, n)=1 ##, it follows that ## n\mid (a-c) ##.
Thus ## a\equiv c\pmod {n} ##.
Therefore, ## a\equiv c\pmod {n} ## whenever ## ab\equiv cd\pmod {n} ## and ## b\equiv d\pmod {n} ##, with ## gcd(b, n)=1 ##.
Suppose ## ab\equiv cd\pmod {n} ## and ## b\equiv d\pmod {n} ##, with ## gcd(b, n)=1 ##.
Then ## n\mid (ab-cd)\implies nk=ab-cd ## and ## n\mid (b-d)\implies nq=b-d ## for some ## k, q\in\mathbb{Z} ##.
This means ## d=b-nq ##.
Now we substitute ## d=b-nq ## into the equation ## nk=ab-cd ##.
Observe that
\begin{align*}
nk=ab-c(b-nq)\\
nk=ab-bc+cnq\\
nk-cnq=b(a-c)\\
n(k-cq)=b(a-c)\\
nr=b(a-c)\\
\end{align*}
where ## r=k-cq ## is an integer.
Thus ## n\mid [b(a-c)] ##.
Note that ## b\mid m ## if ## b\mid (mn) ## and ## gcd(b, n)=1 ##.
Since ## n\mid [b(a-c)] ## and ## gcd(b, n)=1 ##, it follows that ## n\mid (a-c) ##.
Thus ## a\equiv c\pmod {n} ##.
Therefore, ## a\equiv c\pmod {n} ## whenever ## ab\equiv cd\pmod {n} ## and ## b\equiv d\pmod {n} ##, with ## gcd(b, n)=1 ##.