- #1
Math100
- 802
- 222
- Homework Statement
- Prove the following assertion:
If ## a\equiv b \mod n ## and ## m\mid n ##, then ## a\equiv b \mod m ##.
- Relevant Equations
- None.
Proof:
Suppose ## a\equiv b \mod n ##.
Then ## n\mid (a-b)\implies a-b=kn ## for some ## k\in\mathbb{Z} ##.
Since ## m\mid n ##, it follows that ## n=mp ## for some ## p\in\mathbb{Z} ##.
Note that ## a-b=k(mp)\implies a-b=mq ## where ## q=kp ## is an integer.
Thus ## m\mid (a-b) ##.
Therefore, if ## a\equiv b \mod n ## and ## m\mid n ##, then ## a\equiv b \mod m ##.
Suppose ## a\equiv b \mod n ##.
Then ## n\mid (a-b)\implies a-b=kn ## for some ## k\in\mathbb{Z} ##.
Since ## m\mid n ##, it follows that ## n=mp ## for some ## p\in\mathbb{Z} ##.
Note that ## a-b=k(mp)\implies a-b=mq ## where ## q=kp ## is an integer.
Thus ## m\mid (a-b) ##.
Therefore, if ## a\equiv b \mod n ## and ## m\mid n ##, then ## a\equiv b \mod m ##.