- #1
Math100
- 797
- 221
- Homework Statement
- Prove the following assertion:
If ## a\equiv b \mod n ## and ## c>0 ##, then ## ca\equiv cb \mod cn ##.
- Relevant Equations
- None.
Proof:
Suppose ## a\equiv b \mod n ## and ## c\mid n ##.
Then ## n\mid (a-b)\implies kn=a-b ## for some ## k\in\mathbb{Z} ##.
Since ## c\mid n ##, it follows that ## ca-cb=ckn\implies ca-cb=k(cn) ##.
Thus ## ca\equiv cb \mod cn ##.
Therefore, if ## a\equiv b \mod n ## and ## c>0 ##, then ## ca\equiv cb \mod cn ##.
Suppose ## a\equiv b \mod n ## and ## c\mid n ##.
Then ## n\mid (a-b)\implies kn=a-b ## for some ## k\in\mathbb{Z} ##.
Since ## c\mid n ##, it follows that ## ca-cb=ckn\implies ca-cb=k(cn) ##.
Thus ## ca\equiv cb \mod cn ##.
Therefore, if ## a\equiv b \mod n ## and ## c>0 ##, then ## ca\equiv cb \mod cn ##.