- #1
chwala
Gold Member
- 2,752
- 387
- Homework Statement
- Prove that;
$$(a-a^{-1})(a^{\frac {4}{3}} + a^{\frac{-2}{3}}) = \frac {a^2-a^{-2}}{a^{\frac {-1}{3}}}$$
- Relevant Equations
- understanding of indices
My approach;
$$(a-a^{-1})(a^{\frac {4}{3}} + a^{\frac {-2}{3}})
=(a-\frac {1}{a})(a^{\frac {4}{3}} +\frac {1}{a^{\frac {2}{3}}})
=(\frac{a^2-1}{a})(\frac{a^2+1}{a^{\frac {2}{3}}})
=\frac{a^4+a^2-a^2-1}{a^{\frac {5}{3}}}
=\frac{a^4-1}{a^{\frac {5}{3}}}$$
now at this point i multiplied both numerator and denominator by ##a^{-2}##
to realize;
$$\frac{a^4⋅a^{-2}-1⋅a^{-2}}{a^{\frac {5}{3}}⋅a^{-2}}=\frac {a^2-a^{-2}}{a^{\frac {-1}{3}}}$$
Now to my question, is there a different way of proving this without bringing in ##a^{-2}##?
$$(a-a^{-1})(a^{\frac {4}{3}} + a^{\frac {-2}{3}})
=(a-\frac {1}{a})(a^{\frac {4}{3}} +\frac {1}{a^{\frac {2}{3}}})
=(\frac{a^2-1}{a})(\frac{a^2+1}{a^{\frac {2}{3}}})
=\frac{a^4+a^2-a^2-1}{a^{\frac {5}{3}}}
=\frac{a^4-1}{a^{\frac {5}{3}}}$$
now at this point i multiplied both numerator and denominator by ##a^{-2}##
to realize;
$$\frac{a^4⋅a^{-2}-1⋅a^{-2}}{a^{\frac {5}{3}}⋅a^{-2}}=\frac {a^2-a^{-2}}{a^{\frac {-1}{3}}}$$
Now to my question, is there a different way of proving this without bringing in ##a^{-2}##?
Last edited: