- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- See attached.
- Relevant Equations
- trigonometry- Further Maths
I have,
Using ##\ cosh 2x = 2 \cosh^2 x - 1##
##\cosh x = 2 \cosh^2\dfrac{x}{2} -1##
Therefore,
##\cosh x -1 = 2 \cosh^2\dfrac{x}{2} -1 - 1##
##\cosh x -1 = 2 \cosh^2\dfrac{x}{2} -2##
##=2\left[ \cosh^2 \dfrac{x}{2} -1 \right]##
##= 2\left[\left(\dfrac{(e^\frac{x}{2} + e^\frac{-x}{2})}{2}\right)^2-1\right] ##
##= 2\left[\dfrac{(e^\frac{x}{2} + e^\frac{-x}{2})^2}{4}-1\right] ##
##= 2\left[\dfrac{(e^\frac{x}{2} + e^\frac{-x}{2})^2-4}{4}\right] ##
##= 2\left[\dfrac{(e^\frac{x}{2} + e^\frac{-x}{2})^2-4}{4}\right] ##
##= \dfrac{1}{2}\left[ e^x +e^{-x}-2 \right]##
##= \dfrac{1}{2}\left[ e^{0.5x}e^{0.5x} +e^{-0.5x}e^{-0.5x}-e^{0.5x}e^{-0.5x}-e^{0.5x}e^{-0.5x} \right]##
##= \dfrac{1}{2}\left[ e^{0.5x}(e^{0.5x}- e^{-0.5x})+ e^{-0.5x}(e^{-0.5x}-e^{0.5x}) \right]##
##= \dfrac{1}{2}\left[ e^{0.5x}(e^{0.5x}- e^{-0.5x})- e^{-0.5x}(e^{0.5x}-e^{-0.5x}) \right]##
##= \dfrac{1}{2}\left[ e^{0.5x}-e^{-0.5x}\right]^2##
I know that there could be a better straightforward approach...your insight is welcome.
Last edited: