- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- This is my own question (set by me).
##f(x)=x^3+2x^2-4x-8## Prove that
$$\lim_{x→ 2} f(x) =0 $$
- Relevant Equations
- uniform continuity.
I am self-learning analysis.
My steps are as follows,
For any ##ε>0##, there is a ##\delta>0## such that, ##|(x^3+2x^2-4x-8) -0|<ε## when ##0 < |x-2|<\delta##
Let ##\delta≤1## then ##1<x<3, x≠2##.
##|(x^3-2x^2-4x-8) -0|=|(x-2)(x+2)^2|=|x-2||(x+2)^2| <\delta |(x+2)^2|<19\delta##
Taking ##\delta## as ##1## or ##\dfrac{ε}{19}## whichever is smaller. Then we have, ##|(x^3+2x^2-4x-8) -0|<ε## whenever ##0 < |x-2|<\delta##.
insight is welcome.
My steps are as follows,
For any ##ε>0##, there is a ##\delta>0## such that, ##|(x^3+2x^2-4x-8) -0|<ε## when ##0 < |x-2|<\delta##
Let ##\delta≤1## then ##1<x<3, x≠2##.
##|(x^3-2x^2-4x-8) -0|=|(x-2)(x+2)^2|=|x-2||(x+2)^2| <\delta |(x+2)^2|<19\delta##
Taking ##\delta## as ##1## or ##\dfrac{ε}{19}## whichever is smaller. Then we have, ##|(x^3+2x^2-4x-8) -0|<ε## whenever ##0 < |x-2|<\delta##.
insight is welcome.
Last edited: