- #1
lfdahl
Gold Member
MHB
- 749
- 0
Let $a, b$ and $c$ be non-zero real numbers, and let $a\ge b \ge c$. Prove the inequality:
$$\frac{a^3-c^3}{3} \ge abc\left(\frac{a-b}{c}+\frac{b-c}{a}\right)$$
When does equality hold?
Source: Nordic Math. Contest
$$\frac{a^3-c^3}{3} \ge abc\left(\frac{a-b}{c}+\frac{b-c}{a}\right)$$
When does equality hold?
Source: Nordic Math. Contest