- #1
lfdahl
Gold Member
MHB
- 749
- 0
Prove the following identity ($n = 1,2,3,...$):
\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]
\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]