- #1
ghelman
- 14
- 0
As stated, the problem is to prove B(x,r) is a subset of B(x',r') if and only if d(x,x')<r'-r, where d is a measure function. The proof going one direction seems pretty simple, but I can not figure out the other direction
Attempt at answer
<=
Assume d(x,x') < r'-r.
Assume a is an element of B(x,r).
Then d(x,x') < r'-r implies d(x,x') + r < r' implies d(x,x') + d(x,a) < r' as d(x,a) < r.
This implies that d(x',a) < r' by use of the triangle inequality, and thus a is an element of B(x',r').
=>
Let a be an element of B(x,r).
Then a is an element of B(x',r').
So d(x,a)<r and d(x',a)<r'.
This implies that d(x',a)-d(x,a) < r'-r
This would almost suggest a use of the reverse triangle inequality, but the inequality is pointing the wrong direction to use here. I am not sure how to proceed.
Attempt at answer
<=
Assume d(x,x') < r'-r.
Assume a is an element of B(x,r).
Then d(x,x') < r'-r implies d(x,x') + r < r' implies d(x,x') + d(x,a) < r' as d(x,a) < r.
This implies that d(x',a) < r' by use of the triangle inequality, and thus a is an element of B(x',r').
=>
Let a be an element of B(x,r).
Then a is an element of B(x',r').
So d(x,a)<r and d(x',a)<r'.
This implies that d(x',a)-d(x,a) < r'-r
This would almost suggest a use of the reverse triangle inequality, but the inequality is pointing the wrong direction to use here. I am not sure how to proceed.