- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $a,\,b$ and $c$ be positive real numbers for which $a+ b + c = 1$.
Prove that \(\displaystyle \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.\)
Prove that \(\displaystyle \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.\)