Prove the sum is greater than or equal to one half

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    Sum
In summary, the conversation discusses a problem involving positive real numbers $a, b, c$ that add up to 1, and the task is to prove that a certain expression is greater than or equal to 1/2. One solution is presented using the AM-GM inequality and finding the minimum value of the expression.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Let $a,\,b$ and $c$ be positive real numbers for which $a+ b + c = 1$.

Prove that \(\displaystyle \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.\)
 
Mathematics news on Phys.org
  • #2
My solution:

Let:

\(\displaystyle f(a,b,c)=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\)

By cyclic symmetry, we see that the extremum occurs at:

\(\displaystyle (a,b,c)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\)

And we find:

\(\displaystyle f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{2}\)

Choosing another point on the constraint, such as:

\(\displaystyle (a,b,c)=\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)\)

We find:

\(\displaystyle f\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)=\frac{3}{4}>\frac{1}{2}\)

Hence, we may conclude:

\(\displaystyle f_{\min}=\frac{1}{2}\)
 
  • #3
MarkFL said:
My solution:

Let:

\(\displaystyle f(a,b,c)=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\)

By cyclic symmetry, we see that the extremum occurs at:

\(\displaystyle (a,b,c)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\)

And we find:

\(\displaystyle f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{2}\)

Choosing another point on the constraint, such as:

\(\displaystyle (a,b,c)=\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)\)

We find:

\(\displaystyle f\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)=\frac{3}{4}>\frac{1}{2}\)

Hence, we may conclude:

\(\displaystyle f_{\min}=\frac{1}{2}\)

Very good, MarkFL!(Cool) And thanks for participating!
 
  • #4
My solution:

WLOG we can let $a \ge b \ge c$, and we get:

\[\frac{1}{b^2+c^2} \geq \frac{1}{a^2+c^2}\geq \frac{1}{a^2+b^2}\]Repeated use of Chebyschevs Sum Inequality:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq 9\underbrace{(a+b+c)}_{=1} \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\\\\ 9 \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\geq 3\underbrace{(a+b+c)}_{=1} \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right ) \\\\ 3 \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right )\geq \underbrace{(a+b+c)}_{=1} \left ( \frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \right )\]Using the Arithmetic Harmonic Mean Inequality:\[\frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \geq \frac{9}{2(a^2+b^2+c^2)}\]So far, we´ve got the relation:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\]The denominator $a^2+b^2+c^2$ obeys the inequality (Chebyschev once again):\[3(a^2+b^2+c^2) \geq (a+b+c)(a+b+c)=1 \Rightarrow \frac{1}{a^2+b^2+c^2}\leq 3\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}\]
Thus, we have:\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
 
  • #5
Very well done, lfdahl, and thanks for participating!(Cool)
 
  • #6
lfdahl said:
My solution:

WLOG we can let $a \ge b \ge c$, and we get:

\[\frac{1}{b^2+c^2} \geq \frac{1}{a^2+c^2}\geq \frac{1}{a^2+b^2}\]Repeated use of Chebyschevs Sum Inequality:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq 9\underbrace{(a+b+c)}_{=1} \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\\\\ 9 \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\geq 3\underbrace{(a+b+c)}_{=1} \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right ) \\\\ 3 \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right )\geq \underbrace{(a+b+c)}_{=1} \left ( \frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \right )\]Using the Arithmetic Harmonic Mean Inequality:\[\frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \geq \frac{9}{2(a^2+b^2+c^2)}\]So far, we´ve got the relation:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\]The denominator $a^2+b^2+c^2$ obeys the inequality (Chebyschev once again):\[3(a^2+b^2+c^2) \geq (a+b+c)(a+b+c)=1 \Rightarrow \frac{1}{a^2+b^2+c^2}\leq 3\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:
\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
a question in (*)
if $x\geq y \geq z$ then $x\geq z$ there is no doubt
but if $x\geq y \leq z$ then $x\geq z$ is not always true
 
  • #7
anemone said:
Let $a,\,b$ and $c$ be positive real numbers for which $a+ b + c = 1$.

Prove that \(\displaystyle \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.\)

[sp]Why not use the AM-GM inequality?

$$a+b+c=1,\quad a,b,c>0 \\\Leftrightarrow\dfrac{a^3}{b^2+c^2}=\dfrac{b^3}{c^2+a^2}=\dfrac{c^3}{a^2+b^2}\Rightarrow a=b=c=\dfrac13$$

$$f(a,b,c)=\dfrac{a^3}{b^2+c^2}+\dfrac{b^3}{c^2+a^2}+\dfrac{c^3}{a^2+b^2}$$

$$\min(f(a,b,c))=3\sqrt[3]{\dfrac{\left(\dfrac13\right)^9}{8\left(\dfrac13\right)^6}}=\dfrac12$$[/sp]
 
  • #8
Albert said:
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:
\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
a question in (*)
if $x\geq y \geq z$ then $x\geq z$ there is no doubt
but if $x\geq y \leq z$ then $x\geq z$ is not always true

Hi, Albert!

You´re absolutely right: The implication: $x \ge\ y \le z \Rightarrow x\ge z $ is not always true!
Therefore, my solution is not "bullet proof". I´m sorry for having delivered a dubious answer :eek:
 
Last edited:
  • #9
lfdahl said:
Hi, Albert!

You´re absolutely right: The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!
Therefore, my solution is not "bullet proof". I´m sorry for having delivered a dubious answer :eek:
The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!

it should be :
$x \ge\ y \le z \Rightarrow x\ge z $ is not always true!
 
  • #10
Albert said:
The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!

it should be :
$x \ge\ y \le z \Rightarrow x\ge z $ is not always true!

You´re right again :eek:
 

FAQ: Prove the sum is greater than or equal to one half

What does it mean to prove the sum is greater than or equal to one half?

To prove the sum is greater than or equal to one half means to show that the total of a set of numbers is equal to or larger than one half. In other words, the sum of the numbers must be at least one half.

Why is it important to prove the sum is greater than or equal to one half?

Proving the sum is greater than or equal to one half is important because it allows us to show that the combined value of a set of numbers is significant and not negligible. This can be useful in various mathematical and scientific calculations and analyses.

How can I prove the sum is greater than or equal to one half?

To prove the sum is greater than or equal to one half, you can use various mathematical techniques such as algebra, induction, or calculus. You can also use logical reasoning and provide evidence or examples to support your proof.

What are the assumptions needed to prove the sum is greater than or equal to one half?

The assumptions needed to prove the sum is greater than or equal to one half depend on the specific problem or context. Generally, you may need to assume that the numbers are real and positive, or that they follow a certain pattern or relationship. It is important to clearly state and justify the assumptions in your proof.

Can the sum be exactly equal to one half?

Yes, it is possible for the sum to be exactly equal to one half. This would mean that the numbers are carefully chosen and arranged in a way that results in a precise total of one half. However, in most cases, the sum is greater than or equal to one half, as it is a minimum bound.

Similar threads

Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
906
Replies
1
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
1
Views
837
Back
Top