- #1
e2theipi2026
- 9
- 1
Given the prime number sequence [tex]p_n[/tex] and the function [tex]f(n)[/tex] which counts all composite [tex]k\le n[/tex] such that [tex]k[/tex] and [tex]k+2[/tex] are both composite, prove that [tex]f(p_n)[/tex] changes parity an infinite number of times.
Can there be such a proof?
Can there be such a proof?