MHB Prove Trig Identity: $\sin^7 x=\dfrac{35\sin x-21\sin 3x+7\sin 5x-\sin 7x}{64}$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\sin^7 x=\dfrac{35\sin x-21\sin 3x+7\sin 5x-\sin 7x}{64}$.
 
Mathematics news on Phys.org
We have $\sin\,x=\frac{e^{ix}-e^{-ix}}{2i}$

To avoid fraction we have

$2i\sin\,x=e^{ix}-e^{-ix}$

Take power 7

$-128i\sin^7x=(e^{ix}-e^{-ix})^7$

$={7\choose 0}e^{7ix}- {7\choose 1}e^{5ix} + {7\choose 2}e^{3ix} - {7\choose 3}e^{ix} + {7\choose 4}e^{-ix} - {7\choose 5}e^{-3ix} + {7\choose 6}e^{-5ix}- {7\choose 7}e^{-7ix}$

$={7\choose 0}e^{7ix}- {7\choose 1}e^{5ix} + {7\choose 2}e^{3ix} - {7\choose 3}e^{ix} + {7\choose 3}e^{-ix} - {7\choose 2}e^{-3ix} + {7\choose 1}e^{-5ix} - {7\choose 0}e^{-7ix}$ using ${n\choose r} = {n\choose (n-r)}$

$={7\choose 0}(e^{7ix}-e^{-7ix}) - {7\choose 1}(e^{5ix} -e^{5ix}) + {7\choose 2}(e^{3ix} - e^{-3ix}) - {7\choose 3}(e^{ix} - e^{-ix})$

or $=-64\sin ^7x = {7\choose 0}(\frac{(e^{7ix}-e^{-7ix})}{2i}) - {7\choose 1}(\frac{(e^{5ix} -e^{5ix})}{2i}) + {7\choose 2}(\frac{(e^{3ix} - e^{-3ix})}{2i}) - {7\choose 3}(\frac{(e^{ix} - e^{-ix})}{2i})$

$ =1\sin 7x-7\sin 5x+21\sin 3x-35\sin x$

Hence

$\sin^7x=\frac{-1}{64}\sin7x+ \frac{7}{64}\sin5x-\frac{21}{64}\sin3x+ \frac{35}{64}\sin\,x$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top