- #1
lep11
- 380
- 7
Homework Statement
The task is to prove that $$\lim_{x\rightarrow0}\frac{Q_1(x)-Q_2(x)}{\|x\|^k}=0 \implies Q_1=Q_2,$$ where ##Q_1,Q_2## are polynomials of degree ##k## in ##\mathbb{R}^n##.
Homework Equations
$$
\lim_{x\to 0} \frac{a x^\alpha}{\|x\|^n}=\left\{\begin{array}{c}
0 \textrm{ if } |\alpha|>n \\
a \textrm { if } |\alpha|=n \\
\infty \textrm { if } |\alpha|<n \textrm{ and } a\neq 0 \\
0 \textrm{ if } a=0
\end{array}\right.
$$
$$|\alpha|=k=\alpha_1!\alpha_2!\cdot...\cdot\alpha_n!$$
The Attempt at a Solution
Proof by contradiction. Assume that ##Q_{1}\neq{Q_2}## and let's denote ##Q_1(x)-Q_2(x)=F(x)+G(x)## where ##F## is lowest degree (##l##) polynomial and and ##G## contains the rest. Then let's consider the limit $$\lim_{t\rightarrow0}\frac{F(tx)+G(tx)}{\|tx\|^l},$$ where ##b\neq{0}## and ##F(b)\neq{0}##.$$\lim_{t\rightarrow0}\frac{F(tb)+G(tb)}{\|tb\|^l}=\lim_{t\rightarrow0}\frac{G(tb)}{\|tb\|^l}+\lim_{t\rightarrow0}\frac{F(tb)}{\|tb\|^l}=...\neq{0}$$ which is contradiction. Therefore it must hold that ##Q_1=Q_2##.I have problem expanding the limit expression.
Last edited: