- #1
Zoey93
- 15
- 0
Hey there,
I need some help with this assignment:
Use the definition for a ring to prove that Z7 is a ring under the operations + and x as defined as follows: [a]7+7 = [a+b]7 and [a]7 x 7 = [a x b]7
1. state each step of your proof
2. provide written justification for each step.But First I must use the six definitions of a ring to prove that z7 satisfies them.
A ring is a set R equipped with two binary operations,1 here denoted by + and *, that have the following properties.
1. (a + b) + c = a + (b + c) for all a, b and c in R (addition is associative).
2. a + b = b + a for all a and b in R (addition is commutative).
3. There is an element 0 ∈ R such that 0 + x = x + 0 = x for all x ∈ R.
4. For each element x ∈ R, there is a unique element y ∈ R such that x + y = y + x = 0. (We denote y by −x.)
5. (a * b) * c = a * (b * c) for all a, b, and c in R (multiplication is associative).
6. (The distributive law) a * (b + c) = a * b + a * c and (b + c)* a = b * a + c * a for all a, b, and c in R.
This is what I have so far:
1. Additive Associativity Property
[a+b]7+[c]7=[a]7+[b+c]7
~[a+b]7+[c]7=[a]7+7+[c]7 Given
~[a]7+7+[c]7=[a]7+(7+[c]7) Addition of Integers is Associative
~[a]7+(7+[c]7)=[a]7+[b+c]7 Given
2. Additive Commutativity Property
[a]7+7=7+[a]7
~[a]7+7=[a+b]7 Given
~[a+b]7=[b+a]7 Addition of Integers is Commutative
~[b+a]7=7+[a]7 Given
I need some help with this assignment:
Use the definition for a ring to prove that Z7 is a ring under the operations + and x as defined as follows: [a]7+7 = [a+b]7 and [a]7 x 7 = [a x b]7
1. state each step of your proof
2. provide written justification for each step.But First I must use the six definitions of a ring to prove that z7 satisfies them.
A ring is a set R equipped with two binary operations,1 here denoted by + and *, that have the following properties.
1. (a + b) + c = a + (b + c) for all a, b and c in R (addition is associative).
2. a + b = b + a for all a and b in R (addition is commutative).
3. There is an element 0 ∈ R such that 0 + x = x + 0 = x for all x ∈ R.
4. For each element x ∈ R, there is a unique element y ∈ R such that x + y = y + x = 0. (We denote y by −x.)
5. (a * b) * c = a * (b * c) for all a, b, and c in R (multiplication is associative).
6. (The distributive law) a * (b + c) = a * b + a * c and (b + c)* a = b * a + c * a for all a, b, and c in R.
This is what I have so far:
1. Additive Associativity Property
[a+b]7+[c]7=[a]7+[b+c]7
~[a+b]7+[c]7=[a]7+7+[c]7 Given
~[a]7+7+[c]7=[a]7+(7+[c]7) Addition of Integers is Associative
~[a]7+(7+[c]7)=[a]7+[b+c]7 Given
2. Additive Commutativity Property
[a]7+7=7+[a]7
~[a]7+7=[a+b]7 Given
~[a+b]7=[b+a]7 Addition of Integers is Commutative
~[b+a]7=7+[a]7 Given