- #1
solakis1
- 422
- 0
Given the following axioms:
For all A,B,C:
1) A+B=B+A
2) A+(B+C) =(A+B)=C
3) A.B=B.A
4) A.(B.C) = (A.B).C
5) A.(B+C)= A.B+A.C
6) A+0=A
7) A.1=A
8) A+(-A)=1
9) A.(-A)=0
10) Exactly one of the following:
A<B or B<A or A=B
11) A<B => A.C<B.C
12 \(\displaystyle 1\neq 0 \)
Then prove using only the above axioms: 0<1
For all A,B,C:
1) A+B=B+A
2) A+(B+C) =(A+B)=C
3) A.B=B.A
4) A.(B.C) = (A.B).C
5) A.(B+C)= A.B+A.C
6) A+0=A
7) A.1=A
8) A+(-A)=1
9) A.(-A)=0
10) Exactly one of the following:
A<B or B<A or A=B
11) A<B => A.C<B.C
12 \(\displaystyle 1\neq 0 \)
Then prove using only the above axioms: 0<1