MHB Proving $1 \leq a \leq 9$ for Quadratic Equations

Albert1
Messages
1,221
Reaction score
0
$a^2-bc-8a+7=0$
$b^2+c^2+bc-6a+6=0$
prove:$1\leq a\leq9$
 
Mathematics news on Phys.org
My solution:

I cheated a bit because my solution is sort of working backwards, since we know we have to prove that $1\le a \le 9$. :o

Since $(a-1)(a-9)=a^2-10a+9$, we manipulate the first equation algebraically to get:

$a^2-10a+9+2a-2-bc=0$

$a^2-10a+9=bc-2(a-1)$(*)

Rewrite the second equation such that it becomes

$b^2+c^2+bc-6a+6=0$

$6(a-1)=(b-c)^2+3bc$

$2(a-1)=\dfrac{(b-c)^2}{3}+bc$

Substitute the above into (*) yields

$a^2-10a+9=bc-\left(\dfrac{(b-c)^2}{3}+bc \right)=-\dfrac{(b-c)^2}{3}\le 0$

$\therefore a^2-10a+9 \le 0$ this shows $1\leq a\leq9$ and we're done.
 
Last edited:
anemone said:
My solution:
I cheated a bit because my solution is sort of working backwards, since we know we have to prove that $1\le a \le 9$. :o Since $(a-1)(a-9)=a^2-10a+9$, we manipulate the first equation algebraically to get: $a^2-10a+9+2a-2-bc=0$ $a^2-10a+9=bc-2(a-1)$(*) Rewrite the second equation such that it becomes $b^2+c^2+bc-6a+6=0$ $6(a-1)=(b-c)^2+3bc$ $2(a-1)=\dfrac{(b-c)^2}{3}+bc$ Substitute the above into (*) yields $a^2-10a+9=bc-\left(\dfrac{(b-c)^2}{3}+bc \right)=-\dfrac{(b-c)^2}{3}\le 0$ $\therefore a^2-10a+9 \le 0$ this shows $1\leq a\leq9$ and we're done.
very good ! working backwards is also a nice method,it gives us a hint to work forwards.
 
Albert said:
$a^2-bc-8a+7=0$
$b^2+c^2+bc-6a+6=0$
prove:$1\leq a\leq9$

we have from 2nd equation
$b^2+c^2+bc = 6a- 6\ \cdots (1)$
from 1st equation
$bc = a^2-8a + 7\ \cdots (2)$
multiply (2) by 3 and subtract from (1)
$(b-c)^2 = 6a-6 - 3(a^2- 8a +7)$
=$-3a^2+30a-27$
=$-3(a^2-10a+9)$
so $a^2-10a + 9 \le 0$
hence $1 \le a \le 9$
 
Last edited:
kaliprasad said:
we have from 2nd equation
$b^2+c^2+bc = 6a- 6\ \cdots (1)$
from 1st equation
$bc = a^2-8a + 7\ \cdots (2)$
multiply (2) by 3 and subtract from (1)
$(b-c)^2 = 6a-6 - 3(a^2- 8a +7)$
=$-3a^2+30a-27$
=$-3(a^2-10a+9)$
so $a^2-10a + 9 \le 0$
hence $1 \le a \le 9$
very nice !
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top